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Preface

The purpose of this book is to empower the reader with a magnificent new
perspective on a wide range of fundamental topics in mathematics. Tensor calculus
is a language with a unique ability to express mathematical ideas with utmost utility,
transparency, and elegance. It can help students from all technical fields see their
respective fields in a new and exciting way. If calculus and linear algebra are central
to the reader’s scientific endeavors, tensor calculus is indispensable. This particular
textbook is meant for advanced undergraduate and graduate audiences. It envisions
a time when tensor calculus, once championed by Einstein, is once again a common
language among scientists.

A plethora of older textbooks exist on the subject. This book is distinguished
from its peers by the thoroughness with which the underlying essential elements
are treated. It focuses a great deal on the geometric fundamentals, the mechanics of
change of variables, the proper use of the tensor notation, and the interplay between
algebra and geometry. The early chapters have many words and few equations. The
definition of a tensor comes only in Chap. 6—when the reader is ready for it.

Part III of this book is devoted to the calculus of moving surfaces (CMS). One
of the central applications of tensor calculus is differential geometry, and there is
probably not one book about tensors in which a major portion is not devoted to
manifolds. The CMS extends tensor calculus to moving manifolds. Applications
of the CMS are extraordinarily broad. The CMS extends the language of tensors
to physical problems with moving interfaces. It is an effective tool for analyzing
boundary variations of partial differential equations. It also enables us to bring the
calculus of variations within the tensor framework.

While this book maintains a reasonable level of rigor, it takes great care to avoid
a formalization of the subject. Topological spaces and groups are not mentioned.
Instead, this book focuses on concrete objects and appeals to the reader’s geometric
intuition with respect to such fundamental concepts as the Euclidean space, surface,
length, area, and volume. A few other books do a good job in this regard, including
[2, 8, 31, 46]. The book [42] is particularly concise and offers the shortest path to
the general relativity theory. Of course, for those interested in relativity, Hermann
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Weyl’s classic Space, Time, Matter [47] is without a rival. For an excellent book
with an emphasis on elasticity, see [40].

Along with eschewing formalism, this book also strives to avoid vagueness
associated with such notions as the infinitesimal differentials dxi . While a number
of fundamental concepts are accepted without definition, all subsequent elements of
the calculus are derived in a consistent and rigorous way.

The description of Euclidean spaces centers on the basis vectors Zi . These
important and geometrically intuitive objects are absent from many textbooks. Yet,
their use greatly simplifies the introduction of a number of concepts, including
the metric tensor Zij D Zi � Zj and Christoffel symbol �ijk D Zi � @Zj =@Zk .
Furthermore, the use of vector quantities goes a long way towards helping the
student see the world in a way that is independent of Cartesian coordinates.

The notation is of paramount importance in mastering the subject. To borrow
a sentence from A.J. McConnell [31]: “The notation of the tensor calculus is so
much an integral part of the calculus that once the student has become accustomed
to its peculiarities he will have gone a long way towards solving the difficulties
of the theory itself.” The introduction of the tensor technique is woven into the
presentation of the material in Chap. 4. As a result, the framework is described in a
natural context that makes the effectiveness of the rules and conventions apparent.
This is unlike most other textbooks which introduce the tensor notation in advance
of the actual content.

In spirit and vision, this book is most similar to A.J. McConnell’s classic
Applications of Tensor Calculus [31]. His concrete no-frills approach is perfect for
the subject and served as an inspiration for this book’s style. Tullio Levi-Civita’s
own The Absolute Differential Calculus [28] is an indispensable source that reveals
the motivations of the subject’s co-founder.

Since a heavy emphasis in placed on vector-valued quantities, it is important to
have good familiarity with geometric vectors viewed as objects on their own terms
rather than elements in R

n. A number of textbooks discuss the geometric nature of
vectors in great depth. First and foremost is J.W. Gibbs’ classic [14], which served as
a prototype for later texts. Danielson [8] also gives a good introduction to geometric
vectors and offers an excellent discussion on the subject of differentiation of vector
fields.

The following books enjoy a good reputation in the modern differential geometry
community: [3, 6, 23, 29, 32, 41]. Other popular textbooks, including [38, 43] are
known for taking the formal approach to the subject.

Virtually all books on the subject focus on applications, with differential
geometry front and center. Other common applications include analytical dynamics,
continuum mechanics, and relativity theory. Some books focus on particular appli-
cations. A case in point is L.V. Bewley’s Tensor Analysis of Electric Circuits And
Machines [1]. Bewley envisioned that the tensor approach to electrical engineering
would become a standard. Here is hoping his dream eventually comes true.

Philadelphia, PA Pavel Grinfeld
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Chapter 1
Why Tensor Calculus?

“Mathematics is a language.” Thus was the response of the great American scientist
J. Willard Gibbs when asked at a Yale faculty meeting whether mathematics should
really be as important a part of the undergraduate curriculum as classical languages.

Tensor calculus is a specific language within the general language of mathemat-
ics. It is used to express the concepts of multivariable calculus and its applications in
disciplines as diverse as linear algebra, differential geometry, calculus of variations,
continuum mechanics, and, perhaps tensors’ most popular application, general
relativity. Albert Einstein was an early proponent of tensor analysis and made
a valuable contribution to the subject in the form of the Einstein summation
convention. Furthermore, he lent the newly invented technique much clout and
contributed greatly to its rapid adoption. In a letter to Tullio Levi-Civita, a co-
inventor of tensor calculus, Einstein expressed his admiration for the subject in the
following words: “I admire the elegance of your method of computation; it must be
nice to ride through these fields upon the horse of true mathematics while the like
of us have to make our way laboriously on foot.”

Tensor calculus is not the only language for multivariable calculus and its
applications. A popular alternative to tensors is the so-called modern language of
differential geometry. Both languages aim at a geometric description independent
of coordinate systems. Yet, the two languages are quite different and each offers its
own set of relative strengths and weaknesses.

Two of the greatest geometers of the twentieth century, Elie Cartan and Hermann
Weyl, advised against the extremes of both approaches. In his classic Riemannian
Geometry in an Orthogonal Frame [5] (see also, [4]), Cartan recommended to“as
far as possible avoid very formal computations in which an orgy of tensor indices
hides a geometric picture which is often very simple.” In response, Weyl (my
personal scientific hero) saw it necessary to caution against the excessive adherence
to the coordinate free approach [47]: “In trying to avoid continual reference to the
components, we are obliged to adopt an endless profusion of names and symbols in
addition to an intricate set of rules for carrying out calculations, so that the balance
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2 Why Tensor Calculus?

of advantage is considerably on the negative side. An emphatic protest must be
entered against these orgies of formalism which are threatening the peace of even
the technical scientist.”

It is important to master both languages and to be aware of their relative strengths
and weaknesses. The ultimate choice of which language to use must be dictated
by the particular problem at hand. This book attempts to heed the advice of both
Cartan and Weyl and to present a clear geometric picture along with an effective
and elegant analytical technique that is tensor calculus. It is a by-product of the
historical trends on what is in fashion that tensor calculus has presently lost much
of its initial popularity. Perhaps this book will help this magnificent subject to make
a comeback.

Tensor calculus seeks to take full advantage of the robustness of coordinate
systems without falling subject to the artifacts of a particular coordinate system.
The power of tensor calculus comes from this grand compromise: it approaches
the world by introducing a coordinate system at the very start—however, it never
specifies which coordinate system and never relies on any special features of the co-
ordinate system. In adopting this philosophy, tensor calculus finds its golden mean.

Finding this golden mean is the primary achievement of tensor calculus. Also
worthy of mention are some of the secondary benefits of tensor calculus:

A. The tensor notation, even detached from the powerful concept of a tensor,
can often help systematize a calculation, particularly if differentiation is involved.
The tensor notation is incredibly compact, especially with the help of the Einstein
summation convention. Yet, despite its compactness, the notation is utterly robust
and surprisingly explicit. It hides nothing, suggests correct moves, and translates to
step-by-step recipes for calculation.

B. The concept of a tensor arises when one aims to preserve the geometric
perspective and still take advantage of coordinate systems. A tensor is an encoded
geometric object in a particular coordinate system. It is to be decoded at the right
time: when the algebraic analysis is completed and we are ready for the answer.
From this approach comes the true power of tensor calculus: it combines, with
extraordinary success, the best of both geometric and algebraic worlds.

C. Tensor calculus is algorithmic. That is, tensor calculus expressions, such as
Nir˛Zi

˛ for mean curvature of a surface, can be systematically translated into
the lower-level combinations of familiar calculus operations. As a result, it is
straightforward to implement tensor calculus symbolically. Various implementa-
tions are available in the most popular computer algebra systems and as stand-alone
packages.

As you can see, the answer to the question Why Tensor Calculus? is quite
multifaceted. The following four motivating examples continue answering this
question in more specific terms. If at least one of these examples resonates with
the reader and compels him or her to continue reading this textbook, then these
examples will have accomplished their goal.
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Motivating Example 1: The Gradient

What is the gradient of a function F and a point P ? You are familiar with two
definitions, one geometric and one analytical. According to the geometric definition,
the gradient rF of F is the vector that points in the direction of the greatest increase
of the function F , and its magnitude equals the greatest rate of increase. According
to the analytical definition that requires the presence of a coordinate system, the
gradient of F is the triplet of numbers

rF D
�
@F

@x
;
@F

@y

�
: (1.1)

Are the two definitions equivalent in some sense? If you believe that the
connection is

rF D @F

@x
i C @F

@y
j; (1.2)

where i and j are the coordinate basis, you are in for a surprise! Equation (1.2) can
only be considered valid if it produces the same vector in all coordinate systems. You
may not be familiar with the definition of a coordinate basis in general curvilinear
coordinates, such as spherical coordinates. The appropriate definition will be given
in Chap. 5. However, equation (1.2) yields different answers even for the two
coordinate systems in Fig. 1.1.

For a more specific example, consider a temperature distribution T in a two-
dimensional rectangular room. Refer the interior of the room to a rectangular
coordinate system x; y where the coordinate lines are one meter apart. This
coordinate system is illustrated on the left of Fig. 1.1. Express the temperature field
in terms of these coordinates and construct the vector gradient rT according to
equation (1.2).

Fig. 1.1 When the expression in equation (1.2) is evaluated in these two coordinate systems, the
results are not the same.
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Alternatively, refer the interior of the room to another rectangular system x0; y0,
illustrated on the right of Fig. 1.1), whose coordinate lines are two meters apart. For
example, at a point where x D 2, the new coordinate x0 equals 1. Therefore, the
new coordinates and the old coordinates are related by the identities

x D 2x0 y D 2y0: (1.3)

Now repeat the construction of the gradient according to equation (1.2) in the new
coordinate system: refer the temperature field to the new coordinates, resulting in
the function F 0 .x0; y0/, calculate the partial derivatives and evaluate the expression
in equation (1.2), except with “primed” elements:

.rT /0 D @F 0

@x0 i0 C @F 0

@y0 j0: (1.4)

How does rT compare to .rT /0? The magnitudes of the new coordinate vectors
i0 and j0 are double those of the old coordinate vectors i and j. What happens to
the partial derivatives? Do they halve (this would be good) or do they double (this
would be trouble)?

They double! This is because in the new coordinates, quantities change twice
as fast. In evaluating the rate of change with respect to, say, x, one increments
x by a small amount �x, such as �x D 10�3, and determines how much the
function F .x; y/ changes in response to that small change in x. When one evaluates
the partial derivative with respect to x0 in the new coordinate system, the same
increment in the new variable x0 is, in physical terms, twice as large. It results in
twice as large a change �F 0 in the function F 0 .x0; y0/. Therefore, �F 0=�x0 is
approximately twice as large as �F=�x and we conclude that partial derivatives
double:

@F 0 .x0; y0/
@x0 D 2

@F .x; y/

@x
: (1.5)

Thus, the relationship between .rT /0 and rT reads .rT /0 D 4 rT and the
two results are different. Therefore, equation (1.2) cannot be used as the analytical
definition of the gradient because it yields different results in different coordinate
systems.

Tensor calculus offers a solution to this problem. Indeed, one of the central goals
of tensor calculus is to construct expressions that evaluate to the same result in all
coordinate systems. The fix to the gradient can be found in Sect. 6.8 of Chap. 6.

Exercise 1. Suppose that the temperature field T is given by the function
F .x; y/ D x2ey in coordinates x; y. Determine the function F .x0; y0/ ; which
gives the temperature field T in coordinates x0; y0.

Exercise 2. Confirm equation (1.5) for the functions F .x; y/ and F 0 .x0; y0/
derived in the preceding exercise.
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Exercise 3. Show that the expression

rT D 1p
i � i

@F

@x
C 1p

j � j

@F

@y
(1.6)

yields the same result for all rescalings of Cartesian coordinates.

Exercise 4. Show that equation (1.2) yields the same expression in all Cartesian
coordinates. The key to this exercise is the fact that any two Cartesian coordinate
systems x; y and x0; y0 are related by the equation

�
x

y

�
D
�
a

b

�
C
�

cos˛ � sin˛
sin˛ cos˛

� �
x

y

�
: (1.7)

What is the physical interpretation of the numbers a, b, and ˛?

Exercise 5. Conclude that equation (1.6) is valid for all orthogonal affine coordi-
nate systems. Affine coordinates are those with straight coordinate lines.

Motivating Example 2: The Determinant

In your linear algebra course, you studied determinants and you certainly learned
the almost miraculous property that the determinant of a product is a product of
determinants:

jABj D jAj jBj : (1.8)

This relationship can be explained by the deep geometric interpretation of the
determinant as the signed volume of a parallelepiped. Some textbooks—in particular
the textbook by Peter Lax [27]—take this approach. Other notable textbooks (e.g.,
Gilbert Strang’s), derive (1.8) by row operations. Yet other classics, including Paul
Halmos’s [22] and Israel M. Gelfand’s [13], prove identity (1.8) by analyzing the
complicated algebraic definition of the determinant.

In tensor notation, the argument found in Halmos and Gelfand can be presented
as an elegant and beautiful calculation. This calculation can be found in Chap. 9 and
fits in a single line

C D 1

3Š
ı
ijk
rst c

r
i c
s
j c

t
kD

1

3Š
eijkerst a

r
l b
l
i a
s
mb

m
j a

t
nb

n
kD 1

3Š
ABelmne

lmnDAB; Q.E.D.

(1.9)

You will soon learn to carry out such chains with complete command. You will
find that, in tensor notation, many previously complicated calculations become quite
natural and simple.
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Motivating Example 3: Vector Calculus

Hardly anyone can remember the key identities from vector calculus, let alone derive
them. Do you remember this one?

A � .r � B/ D rB .A � B/ � .A � r/B‹ (1.10)

(And, more importantly, do you recall how to interpret the expressions rB .A � B/
and .A � r/B?) I will admit that I do not have equation (1.10), either. However,
when one knows tensor calculus, one need not memorize identities such as (1.10).
Rather, one is able to derive and interpret them on the fly:

"rsiAs"ijkrjBk D
�
ırj ı

s
k � ısj ırk

�
AsrjBk D AsrrBs � AsrsBr : (1.11)

In equation (1.11) we see Cartan’s orgy of formalism of equation (1.10) replaced by
Weyl’s orgy of indices. In this particular case, the benefits of the tensor approach
are evident.

Motivating Example 4: Shape Optimization

The problem of finding a surface with the least surface area that encloses the domain
of a given volume, the answer being a sphere, is one of the oldest problems in
mathematics. It is now considered to be a classical problem of the calculus of
variations. Yet, most textbooks on the calculus of variations deal only with the two-
dimensional variant of this problem, often referred to as the Dido Problem or the
problem of Queen Dido, which is finding a curve of least arc length that incloses a
domain of a given area. The full three-dimensional problem is usually deemed to be
too complex, while the treatment of the two-dimensional problem often takes two
or more pages.

The calculus of a moving surface—an extension of tensor calculus to deforming
manifolds, to which Part III of this textbook is devoted—solves this problem
directly, naturally, and concisely. The following derivation is found in Chap. 17
where all the necessary details are given. Here, we give a general outline merely to
showcase the conciseness and the elegance of the analysis.

The modified objective function E incorporating the isoperimetric constraint for
the surface S enclosing the domain � reads

E D
Z
S

dS C �

Z
�

d�; (1.12)

where � is a Lagrange multiplier. The variation ıE with respect to variations C in
shape is given by
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ıE D
Z
S

C
��B˛

˛ C �
	
dS; (1.13)

where B˛
˛ is mean curvature. Since C can be treated as an independent variation,

the equilibrium equation states that the optimal shape has constant mean curvature

B˛
˛ D �: (1.14)

Naturally, a sphere satisfies this equation.
This derivation is one of the most vivid illustrations of the power of tensor cal-

culus and the calculus of moving surfaces. It shows how much can be accomplished
with the help of the grand compromise of tensor calculus, including preservation of
geometric insight while enabling robust analysis.



Part I
Tensors in Euclidean Spaces



Chapter 2
Rules of the Game

2.1 Preview

According to the great German mathematician David Hilbert,“mathematics is a
game played according to certain simple rules with meaningless marks on paper.”
The goal of this chapter is to lay down the simple rules by which the game of tensor
calculus is played.

We take a relatively informal approach to the foundations of our subject. We
do not mention R

n, groups, isomorphisms, homeomorphisms and polylinear forms.
Instead, we strive to build a common context by appealing to concepts that we
find intuitively clear. Our goal is to establish an understanding of Euclidean spaces
and of the fundamental operations that take place in a Euclidean space—most
notably, operations on vectors including differentiation of vectors with respect to
a parameter.

2.2 The Euclidean Space

All objects discussed in this book live in a Euclidean space.
What is a Euclidean space? There is a formal definition, but for us an informal

definition will do: a Euclidean space corresponds to the physical space of our
everyday experience. There are many features of this space that we take for granted.
The foremost of these is its ability to accommodate straight-edged objects. Take a
look at Rodin’s “The Thinker” (Le Penseur) in Fig. 2.1. Of course, the sculpture
itself does not have a single straight line in it. But the gallery in which it is housed
is a perfect rectangular box.

Our physical space is called Euclidean after the ancient Greek mathematician
Euclid of Alexandria who lived in the fourth century BC. He is the author of
the Elements [11], a book in which he formulated and developed the subject of
geometry. The Elements reigned as the supreme textbook on geometry for an

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
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Fig. 2.1 Rodin’s “Thinker” finds himself in a Euclidean space characterized by the possibility of
straightness

Fig. 2.2 A page from The Elements

astoundingly long period of time: since its creation and until the middle of the
twentieth century. The Elements set the course for modern science and earned Euclid
a reputation as the “Father of Geometry”.

Euclid’s geometry is based on the study of straight lines and planes. Figure 2.2
shows a page from one of the oldest (circa 100AD) surviving copies of The
Elements. That page contains a drawing of a square and an adjacent rectangle. Such
a drawing may well be found in a contemporary geometry textbook. The focus is on
straight lines.
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Not all spaces have the ability to accommodate straight lines. Only the straight
line, the plane, and the full three-dimensional space are Euclidean. The rest, such
as the surface of a sphere, are not. Some curved spaces display only certain features
of Euclidean spaces. For example, the surface of a cylinder, while non-Euclidean,
can be cut with a pair of scissors and unwrapped into a flat Euclidean space. The
same can be said of the surface of a cone. We know, on an intuitive level, that
these are essentially flat surfaces arranged, with no distortions, in the ambient three-
dimensional space. We have not given the term “essentially flat” a precise meaning,
but we will do so in Chap. 12.

2.3 Length, Area, and Volume

Are you willing to accept the concept of a Euclidean space without a formal
definition? If so, you should similarly accept two additional geometric concepts:
length of a segment and angle between two segments.

The concept of area can be built up from the concept of length. The area of a
rectangle is the product ab of the lengths of its sides. A right triangle is half of a
rectangle, so its area is the product ab of the lengths of its sides adjacent to the right
angle. The area of an arbitrary triangle can be calculated by dividing it into two right
triangles. The area of a polygon can be calculated by dividing it into triangles.

The concept of volume is similarly built up from the concept of length. The
volume of a rectangular box is the product abc of the lengths of its sides. The
volume of a tetrahedron is Ah=3 where h is the height and A is the area of the
opposite base. Interestingly, the geometric proof of this formula is not simple. The
volume of a polyhedron can be calculated by dividing it intro tetrahedra.

Our intuitive understanding of lengths, areas, and volumes also extends to curved
geometries. We understand the meaning of the surface area of a sphere or a cylinder
or any other curved surface. That is not to say that the formalization of the notion
of area is completely straightforward. Even for the cylinder, an attempt to define
area as the limit of surface areas of inscribed polyhedra was met with fundamental
difficulties. An elementary example [39, 48], in which the inscribed areas approach
infinity, was put forth by the German mathematician Hermann Schwarz.

However, difficulties in formalizing the concepts of surface area and volume
did not prevent mathematicians from to calculating those quantities effectively. An
early and fundamental breakthrough came from Archimedes who demonstrated that
the volume of a sphere is 4

3
�R3 and its surface area is 4�R2. The final word on

the subject of quadrature (i.e., computing areas and volumes) came nearly 2,000
years later in the form of Isaac Newton’s calculus. We reiterate that difficulties in
formalizing the concepts of length, area, and volume and difficulties in obtaining
analytical expressions for lengths, areas, and volumes should not prevent us from
discussing and using these concepts.

In our description of space, length is a primary concept. That is, the concept of
length comes first and other concepts are defined in terms of it. For example, below
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we define the dot product between two vectors as the product of their lengths and
the cosine of the angle between them. Thus, the dot product a secondary concept
defined in terms of length. Meanwhile, length is not defined in terms of anything
else—it is accepted without a definition.

2.4 Scalars and Vectors

Scalar fields and vector fields are ubiquitous in our description of natural phenom-
ena. The term field refers to a collection of scalars or vectors defined at each point
of a Euclidean space or subdomain �. A scalar is a real number. Examples of
scalar fields include temperature, mass density, and pressure. A vector is a directed
segment. Vectors are denoted by boldface letters such as V and R. Examples of
vector fields include gravitational and electromagnetic forces, fluid flow velocity,
and the vector gradient of a scalar field. This book introduces a new meaningful
type of field—tensor fields—when the Euclidean space is referred to a coordinate
system.

2.5 The Dot Product

The dot product is an operation of fantastic utility. For two vectors U and V, the dot
product U � V is defined as the product of their lengths jUj and jVj and the cosine of
the angle between them:

U � V D jUj jVj cos˛: (2.1)

This is the only sense in which the dot product is used in this book. The great utility
of the dot product comes from the fact that most, if not all, geometric properties can
be expressed in terms of the dot product.

The dot product has a number of fundamental properties. It is commutative

U � V D V � U (2.2)

which is clear from the definition (2.1). It is also linear in each argument. With
respect to the first argument, linearity means

.U1 C U2/ � V D U1 � V C U2 � V: (2.3)

This property is also known as distributivity. Unlike commutativity, which imme-
diately follows from the definition (2.1), distributivity is not at all obvious and the
reader is invited to demonstrate it geometrically.
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Exercise 6. Demonstrate geometrically that the dot product is distributive.

As we mentioned above, most geometric quantities can be expressed in terms of
the dot product. The length jUj of a vector U is given by

jUj D p
U � U: (2.4)

Similarly, the angle ˛ between two vectors U and V, is given by

˛ D arccos
U � Vp

U � U
p

V � V
: (2.5)

The definition (2.1) of the dot product relies on the concept of the angle between
two vectors. Therefore, angle may be considered a primary concept. It turns out,
however, that the concept of angle can be derived from the concept of length. The
dot product U � V can be defined in terms of lengths alone, without a reference to
the angle ˛:

U � V DjU C Vj2 � jU � Vj2
4

: (2.6)

Thus, the concept of angle is not needed for the definition of the dot product. Instead,
equation (2.5) can be viewed as the definition of the angle between U and V.

2.5.1 Inner Products and Lengths in Linear Algebra

In our approach, the concept of length comes first and the dot product is built upon
it. In linear algebra, the dot product is often referred to as the inner product and
the relationship is reversed: the inner product .U;V/ is any operation that satisfies
three properties (distributivity, symmetry, and positive definiteness), and length jUj
is defined as the square root of the inner product of U with itself

jUj D
p
.U;U/: (2.7)

Thus, in linear algebra, the inner product is a primary concept and length is a
secondary concept.

2.6 The Directional Derivative

A directional derivative measures the rate of change of a scalar field F along a
straight line. Let a straight ray l emanate from the point P . Suppose that P � is
a nearby point on l and let P � approach P in the sense that the distance PP �
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approaches zero. Then the directional derivative dF=dl at the point P is defined as
the limit

dF .P /

dl
D lim

P�!P

F .P �/ � F .P /
PP � : (2.8)

Instead of a ray, we could consider an entire straight line, but we must still pick a
direction along the line. Additionally, we must let the distance PP � be signed. That
is, we agree that PP � is positive if the direction from P to P � is the same as the
chosen direction of the line l , and negative otherwise.

The beauty of the directional derivative is that it is an entirely geometric concept.
Its definition requires two elements: straight lines and length. Both are present in
Euclidean spaces, making definition (2.8) possible. Importantly, the definition of a
directional derivative does not require a coordinate system.

The definition of the direction derivative can be given in terms of the ordinary
derivative of a scalar function. This can help avoid using limits by hiding the concept
of the limit at a lower level. Parameterize the points P � along the straight line l by
the signed distance s from P to P �. Then the values of function of s in the sense
of ordinary calculus. Let us denote that function by f .s/, using a lower case f to
distinguish it from F , the scalar field defined in the Euclidean space. Then, as it is
easy to see

dF .P /

dl
D f 0 .0/ ; (2.9)

where the derivative of f .s/ is evaluated in the sense of ordinary calculus.
Definition (2.9) assumes that the parameterization is such that s D 0 at P . More
generally, if the point P is located at s D s0, then the definition of dF=dl is

dF .P /

dl
D f 0 .s0/ : (2.10)

The following exercises are meant reinforce the point that directional derivatives
can be evaluated without referring the Euclidean space to a coordinate system.

Exercise 7. Evaluate dF=dl for F .P / D “Distance from point P to point A” in
a direction perpendicular to AP .

Exercise 8. Evaluate dF=dl for F .P / D “1=(Distance from point P to pointA)”
in the direction from P to A.

Exercise 9. Evaluate dF=dl for F .P / D “Angle between OA and OP ”, where
O and A are two given points, in the direction from P to A.

Exercise 10. Evaluate dF=dl for F .P / D “Distance from P to the straight line
that passes through A and B”, where A and B are given points in the direction
parallel to AB . The distance between a point P and a straight line is defined as the



2.7 The Gradient 17

shortest distance between P and any of the points on the straight line. The same
definition applies to the distance between a point and a curve.

Exercise 11. Evaluate dF=dl for F .P / D “Area of triangle PAB”, where A and
B are fixed points, in the direction parallel to AB .

Exercise 12. Evaluate dF=dl for F .P / D “Area of triangle PAB”, where A and
B are fixed points, in the direction orthogonal to AB .

2.7 The Gradient

The concept of the directional derivative leads to the concept of the gradient. The
gradient rF of F is defined as a vector that points in the direction of the greatest
increase in F . That is, it points in the direction l along which dF=dl has the
greatest value. The length of the gradient vector equals the rate of the increase,
that is jrF j D dF=dl . Note that the symbol r in rF is bold indicating that the
gradient is a vector quantity. Importantly, the gradient is a geometric concept. For a
given scalar field, it can be evaluated, at least conceptually, by pure geometric means
without a reference to a coordinate system.

Exercise 13. Describe the gradient for each of the functions from the preceding
exercises.

The gradient rF and the directional derivative dF=dl along the ray l are related
by the dot product:

dF

dl
D rF � L; (2.11)

where L is the unit vector in the direction of the ray l . This is a powerful relationship
indeed and perhaps somewhat unexpected. It shows that knowing the gradient is
sufficient to determine the directional derivatives in all directions. In particular, the
directional derivative is zero in any direction orthogonal to the gradient.

If we were to impose a coordinate system on the Euclidean space (doing so
would be very much against the geometric spirit of this chapter), we would see
equation (2.11) as nothing more than a special form of the chain rule. This approach
to equation (2.11) is discussed in Chap. 6 after we have built a proper framework for
operating safely in coordinate systems. Meanwhile, you should view equation (2.11)
as a geometric identity

Exercise 14. Give the geometric intuition behind equation (2.11). In other words,
explain geometrically, why knowing the gradient is sufficient to determine the
directional derivatives in all possible directions.



18 2 Rules of the Game

2.8 Differentiation of Vector Fields

In order to be subject to differentiation, a field must consist of elements that posses
three basic properties. First, the elements can be added together to produce another
element of the same kind. Second, the elements can be multiplied by real numbers.
Can geometric vectors be added together and multiplied by real numbers? Certainly,
yes. So far, geometric vectors are good candidates for differentiation with respect to
a parameter.

The third property is the ability to approach a limit. The natural definition of
limits for vector quantities is based on distance. If vector A depends on a parameter
h, we say that A .h/ ! B as h ! 0, if

lim
h!0

jA .h/ � Bj D 0: (2.12)

In summary, geometric vectors posses the three required properties. Thus, geometric
vectors can be differentiated with respect to a parameter.

Consider the radial segment on the unit circle and treat it as a vector function
R .˛/ of the angle ˛. In order to determine R0 .˛/, we appeal to the definition (2.8).
We take ever smaller values of h and construct the ratio .R .˛ C h/ � R .˛// =h
in Fig. 2.3. The figure shows the vectors R .˛/ and R .˛ C h/, their diminishing
difference �R D R .˛ C h/ � R .˛/, as well as the quantity �R=h. It is apparent
that the ratio �R=h converges to a specific vector. That vector is R0 .˛/.

Fig. 2.3 A limiting process that constructs the derivative of the vector R .˛/ with respect to ˛
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In practice, it is rare that essentially geometric analysis can produce an answer.
For example, from the example above, we may conjecture that R0 .˛/ is orthogonal
to R0 .˛/ and of unit length, but it is nontrivial to demonstrate so convincingly in
purely geometric terms. Certain elements of the answer can be demonstrated without
resorting to algebraic analysis in a coordinate system, but typically not all.

In our current example R0 .˛/ can be determined completely without any
coordinates. To show orthogonality, note that R .˛/ is the unit length, which can
be written as

R .˛/ � R .˛/ D 1: (2.13)

Differentiating both sides of this identity with respect to ˛, we have, by the product
rule

R0 .˛/ � R .˛/C R .˛/ � R0 .˛/ D 0; (2.14)

where we have assumed, rather reasonably but without a formal justification, that
the derivative of a scalar product satisfies the product rule. We therefore have

R .˛/ � R0 .˛/ D 0; (2.15)

showing orthogonality.
To show that R0 .˛/ is unit length, note that the length of the vector R .˛ C h/ �

R .˛/ is 2 sin h
2
. Thus the length of R0 .˛/ is given by the limit

lim
h!0

2 sin h
2

h
D 1 (2.16)

and we have confirmed that R0 .˛/ is orthogonal to R .˛/ and is unit length. In
the next chapter, we rederive this result with the help of a coordinate system as an
illustration of the utility of coordinates.

Exercise 15. Show that the length of R .˛ C h/ � R .˛/ is 2 sin h
2
.

Exercise 16. Confirm that the limit in (2.16) is 1 by L’Hôpital’s rule.

Exercise 17. Alternatively, recognize that the limit in (2.16) equals sin0 0 D
cos 0 D 1.

Exercise 18. Determine R00 .˛/.

2.9 Summary

In this chapter, we introduced the fundamental concepts upon which the subject
of tensor calculus is built. The primary elements defined in the Euclidean space
are scalar and vector fields. Curve segments, two-dimensional surface patches,
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and three-dimensional domains are characterized lengths, areas, and volumes. This
chapter dealt with geometric objects that can be discussed without a reference
to a coordinate system. However, coordinate systems are necessary since the
overwhelming majority of applied problems cannot be solved by geometric means
alone. When coordinate systems are introduced, tensor calculus serves to preserve
the geometric perspective by offering a strategy that leads to results that are
independent of the choice of coordinates.



Chapter 3
Coordinate Systems and the Role
of Tensor Calculus

3.1 Preview

Tensor calculus was invented in order to make geometric and analytical methods
work together effectively. While geometry is one of the oldest and most developed
branches of mathematics, coordinate systems are relatively new, dating back to the
1600s. The introduction of coordinate systems enabled the use of algebraic methods
in geometry and eventually led to the development of calculus. However, along with
their tremendous power, coordinate systems present a number of potential pitfalls,
which soon became apparent. Tensor calculus arose as a mechanism for overcoming
these pitfalls. In this chapter, we discuss coordinate systems, the advantages and
disadvantages of their use, and explain the need for tensor calculus.

3.2 Why Coordinate Systems?

Coordinate systems make tasks easier! The invention of coordinates systems was
a watershed event in seventeenth-century science. Joseph Lagrange (1736–1813)
described the importance of this event in the following words: “As long as algebra
and geometry have been separated, their progress has been slow and their uses
limited, but when these two sciences have been united, they have lent each mutual
forces, and have marched together towards perfection.” Coordinate systems enabled
the use of powerful algebraic methods in geometric problems. This in turn led
to the development of new algebraic methods inspired by geometric insight. This
unprecedented wave of change culminated in the invention of calculus. Prior to
the invention of coordinate systems, mathematicians had developed extraordinary
skill at solving problems by geometric means. The invention of coordinates and the
subsequent invention of calculus opened up problem solving to the masses.

The individual whose name is most closely associated with the invention of
coordinate systems is René Descartes (1596–1650), whose portrait is found in
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Fig. 3.1 Réne Descartes is
credited with the invention of
coordinate systems. His use
of coordinates was brilliant

Fig. 3.1. We do not know if Descartes was the first to think of assigning numbers
to points, but he was the first to use this idea to incredible effect. For example, the
coordinate system figured prominently in Descartes’ tangent line method, which he
described as “Not only the most useful and most general problem in geometry that
I know, but even that I have ever desired to know.” The original description of the
method may be found in Descartes’ masterpiece The Geometry [9]. An excellent
historical perspective can be found in [15].

An example from Chap. 2 provides a vivid illustration of the power of coor-
dinates. In Sect. 2.8, we considered a vector R .˛/ that traces out the unit as the
parameter ˛ changes from 0 to 2� . We concluded, by reasoning geometrically,
that the derivative R0 .˛/ is unit length and orthogonal to R .˛/. Our derivation
took a certain degree of geometric insight. Even for a slightly harder problem—
for example, R .˛/ tracing out an ellipse instead of a circle—R0 .˛/ would be much
harder to calculate.

With the help of coordinates, the same computation becomes elementary and
even much harder problems can be handled with equal ease. Let us use Cartesian
coordinates and denote the coordinate basis by fi; jg. Then, R .˛/ is given by

R .˛/ D i cos˛ C j sin˛; (3.1)

which yields R0 .˛/ by a simple differentiation:

R0 .˛/ D �i sin˛ C j cos˛: (3.2)
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That’s it: we found R0 .˛/ in one simple step. To confirm that R0 .˛/ is orthogonal
to R .˛/, dot R0 .˛/ with R .˛/:

R0 .˛/ � R .˛/ D � sin˛ cos˛ C sin˛ cos˛ D 0: (3.3)

To confirm that R0 .˛/ is unit length, compute the dot product

R0 .˛/ � R0 .˛/ D sin2 ˛ C cos2 ˛ D 1: (3.4)

Even this simple example shows the tremendous utility of operating within a
coordinate system. On the other hand, coordinates must be handled with skill. The
use of coordinates comes with its own set of pitfalls. Overreliance of coordinates is
often counterproductive. Tensor calculus was born out of the need for a systematic
and disciplined strategy for using coordinates. In this chapter, we will touch upon
the difficulties that arise when coordinates are used inappropriately.

3.3 What Is a Coordinate System?

A coordinate system assigns sets of numbers to points in space in a systematic
fashion. The choice of the coordinate system is dictated by the problem. If a problem
can be solved with the help of one coordinate system it may also be solved with
another. However, the solution may be more complicated in one coordinate system
than the other. For example, we can refer the surface of the Earth to spherical
coordinates (described in Sect. 3.6.5). When choosing a spherical coordinate system
on a sphere, one needs to make two decisions—where to place the poles and where
the azimuth count starts. The usual choice is a good one: the coordinate poles
coincide with the North and South poles of the Earth, and the main meridian passes
through London.

This coordinate system is convenient in many respects. For example, the length
of day can be easily determined from the latitude and the time of year. Climate
is very strongly tied to the latitude as well. Time zones roughly follow meridians.
Centripetal acceleration is strictly a function of the latitude. It is greatest at the
equator (	 D �=2).

Imagine what would happen if the coordinate poles were placed in Philadelphia
(	 D 0) and the opposite pole (	 D �) in the middle of the ocean southwest of
Australia? Some tasks would become easier, others harder. For example, calculating
the distance to Philadelphia would become a very simple task: the point with
coordinates .	; 
/ is R	 miles away, where R is the radius of the Earth. On the
other hand, some of the more important tasks, like determining the time of day,
would become substantially more complicated.
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3.4 Perils of Coordinates

It may seem then, that the right strategy when solving a problem is to pick the right
coordinate system. Not so! The conveniences of coordinate systems come with great
costs including loss of generality and loss of geometric insight. This can quite often
be the difference between succeeding and failing at solving the problem.

Loss of Geometric Insight

A famous historical episode can illustrate how an analytical calculation, albeit
brilliant, can fail to identify a simple geometric picture. Consider the task of finding
the least surface area that spans a three-dimensional contour U . Mathematically, the
problem is to minimize the area integral

A D
Z
S

dS (3.5)

over all possible surfaces S for which the contour boundary U is specified. Such
a surface is said to be minimal. The problem of finding minimal surfaces is a
classical problem in the calculus of variations. Leonhard Euler laid the foundation
for this subject in 1744 in the celebrated work entitled The method of finding plane
curves that show some property of maximum and minimum [12]. Joseph Lagrange
advanced Euler’s geometric ideas by formulating an analytical method in Essai
d’une nouvelle méthode pour déterminer les maxima et les minima des formules
intégrales indéfinies [26] published in 1762. Lagrange derived a relationship that a
surface in Cartesian coordinates .x; y; z/ represented by

z D F .x; y/ (3.6)

must satisfy. That relationship reads

Fxx C Fyy C FxxF
2
y C FyyF

2
x � 2FxFyFxy D 0: (3.7)

The symbols Fxx denotes @2F=@x2 and the rest of the elements follow the same
convention. In the context of calculus of variations, equation (3.7) is known as the
Euler-Lagrange equation for the functional (3.5).

What is the geometric meaning of equation (3.7)? We have the answer now but,
as hard as it is to believe, neither Lagrange nor Euler knew it! The geometric insight
came 14 years later from a young French mathematician Jean Baptiste Meusnier.
Meusnier realized that minimal surfaces are characterized by zero mean curvature.
We denote mean curvature by B˛

˛ and discuss it thoroughly in Chap. 12. For a
surface given by (3.6) in Cartesian coordinates, mean curvature B˛

˛ is given by
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B˛
˛ D Fxx C Fyy C FxxF

2
y C FyyF

2
x � 2FxFyFxy�

1C F 2
x C F 2

y

�3=2 : (3.8)

Therefore, as Meusnier discovered, minimal surfaces are characterized by zero
mean curvature:

B˛
˛ D 0: (3.9)

The history of calculus of variations is one of shining success and has bestowed
upon its authors much deserved admiration. Furthermore, we can learn a very
valuable lesson from the difficulties experienced even by the great mathematicians.
By choosing to operate in a particular coordinate system, Lagrange purposefully
sacrificed a great deal of geometric insight in exchange for the power of analytical
methods. In doing so, Lagrange was able to solve a wider range of problems than
the subject’s founder Euler.

Analytic Complexity

As we can see, coordinate systems are indispensable for problem solving. However,
the introduction of a particular coordinate system must take place at the right
moment in the solution of a problem. Otherwise, the expressions that one encounters
can become impenetrably complex. The complexity of the expression (3.8) for mean
curvature speaks to this point. Lagrange was able to overcome the computational
difficulties that arose in obtaining equation (3.7). Keep in mind, however, that
equation (3.7) corresponds to one of the simplest problems of its kind. Imagine
the complexity that would arise is the analysis of a more complicated problem.
For example, consider the following problem that has important applications for
biological membranes: to find the surface S with a given contour boundary U that
minimizes the integral of the square of mean curvature:

E D
Z
S

�
B˛
˛

	2
dS: (3.10)

In Cartesian coordinates, E is given by the expression

E D
Z
S

�
Fxx C Fyy C FxxF

2
y C FyyF

2
x � 2FxFyFxy

�2
�
1C F 2

x C F 2
y

�3 dxdy: (3.11)

As it is shown in Chap. 17, the Euler–Lagrange equation corresponding to equa-
tion (3.10) reads

rˇrˇB˛
˛ � B˛

˛B
�

ˇB
ˇ
� � 1

2

�
B˛
˛

	3 D 0 (3.12)
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Fig. 3.2 The Laplacian of mean curvature in Cartesian coordinates

The first term in this equation is rˇrˇB˛
˛ , the surface Laplacian rˇrˇ of mean

curvature B˛
˛ . The surface Laplacian is discussed in Chap. 11. Let us now try to

imagine the mayhem that the Euler–Lagrange equation would be if the standard
analysis of calculus of variations were applied directly to equation (3.11). The
expression for rˇrˇB˛

˛ , a relatively simple geometric quantity, is shown in Fig. 3.2.
Despite its apparent impenetrability, it is endowed with geometric meaning: it is
the Laplacian of mean curvature. The Laplacian of mean curvature is an important
object that arises often in the analysis of surfaces. We shall denote it by r˛r˛B

ˇ

ˇ . It
is hard to image that someone would carry their analysis this far! If one did, it is even
harder to imagine that someone would be able to recognize this expression as the
Laplacian of mean curvature! These unmanageable expressions arise because the
formulation of the minimization problem (3.11) in a Cartesian coordinate system—
or any other particular coordinate system, for that matter—is ineffective.
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3.5 The Role of Tensor Calculus

The central idea of tensor calculus is to acknowledge the need for coordinate
systems and, at the same time, to avoid selecting a particular coordinate system
for as long as possible in the course of solving a problem. Tensor calculus provides
algorithms for constructing analytical expressions that are valid in all coordinate
systems simultaneously. You will soon learn that tensor expressions, such as B˛

˛ ,
translate to consistent and detailed recipes for calculating geometric quantities
in particular coordinate systems. If an expression evaluates to the same value in
all coordinate systems, then it must be endowed with geometric meaning. Tensor
calculus has proven to be a remarkably effective framework in which Lagrange’s
mutual forces can be lent between algebra and geometry.

3.6 A Catalog of Coordinate Systems

In this section, we describe the most commonly used coordinates systems in
Euclidean spaces: Cartesian, affine, polar, cylindrical and spherical. A good way
to illustrate a coordinate system graphically is by drawing the coordinate lines in
two dimensions (e.g. Fig. 3.3), and coordinate surfaces in three dimensions (e.g.
Fig. 3.4). A coordinate line or surface is a set of points for which the value of a
particular coordinate is fixed. For example, in Cartesian coordinates x; y; z in three

Fig. 3.3 Coordinate lines for a typical curvilinear coordinate system
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Fig. 3.4 Spherical coordinates. The plot on the right shows an example of a coordinate surface for
each variable

dimensions, the coordinate surface corresponding to x D 1 is a plane parallel to
the yz-plane. In spherical coordinates, the coordinate surface r D 2 is a sphere of
radius 2 centered at the origin.

The figures below show coordinate lines corresponding to integer values of
the fixed coordinate. In other words, the display coordinate lines are spaced one
coordinate unit apart. When a Euclidean space is referred to a coordinate system,
the term unit becomes ambiguous: it may refer to a coordinate unit or a unit of
Euclidean length. For example, in Fig. 3.3 depicting a generic coordinate system
Z1;Z2, the points A and B have coordinates .�1; 2/ and .�2; 2/ and are therefore
one coordinate unit apart. However, the Euclidean distance between A and B may
be quite different.

In all likelihood, you are already familiar with the most common coordinate
systems described below. Nevertheless, we invite you to read the following sections,
since we describe each coordinates system in absolute terms, rather than (as done in
most texts) by a reference to a background Cartesian grid. This absolute approach
is more true to the spirit of tensor calculus.

3.6.1 Cartesian Coordinates

We start with the legendary Cartesian coordinates. Cartesian coordinates are the
most used and the most overused coordinate system. It is a natural choice in many
situations and, in an a number of ways, the easiest coordinate system to use. It
is also an unnatural choice in many situations where it is used anyway, especially
those situations where one need not choose a coordinate system at all. It is one of
the goals of this book to rid the reader of the acquired dependency on Cartesian
coordinates.

Cartesian coordinates x; y refer the Euclidean plane to a regular square grid with
coordinate lines one Euclidean unit apart, as illustrated in Fig. 3.5. A point with
coordinates x D x0 and y D y0 is denoted by .x0; y0/. The pointO with coordinates
.0; 0/ is called the origin.
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Fig. 3.5 Two different Cartesian coordinate systems

Cartesian coordinates (as well as affine coordinates described next) can be
characterized by a natural coordinate basis i; j. The vector i connects the origin
to the point with coordinates .1; 0/ while the vector j connects the origin to the
point with coordinates .0; 1/. A vector V connecting the origin to the point with
coordinates .x0; y0/ can be expressed by the linear combination

V D x0 i C y0 j: (3.13)

Thus, a Cartesian coordinate yields an orthonormal basis i; j for vectors in the plane.
Conversely, any orthonormal basis i; j, combined with the location of the origin,
corresponds to a Cartesian coordinate system.

The requirement that the coordinate unit equals the Euclidean unit of length is
essential to the definition of a Cartesian coordinate system. A similarly constructed
coordinate systems with integer coordinate lines two Euclidean units of length apart
would no longer be considered Cartesian. It would instead be characterized as an
orthogonal affine coordinate system.

There are infinitely many Cartesian coordinate systems in the plane. A Cartesian
coordinate system is characterized by three continuous degrees of freedom: the
location of the origin and direction of the x-axis. Furthermore, the role of axes can
be reversed. That is, i and j can be chosen such that the shortest path from i to j is
either counterclockwise or clockwise. In the former case, the coordinates are called
right-handed, in the latter—left-handed.

Exercise 19. Generalize the contents of the section to three dimensions.

Exercise 20. Describe a set of six degrees of freedom in choosing Cartesian
coordinates in the three-dimensional space.

The concept of orientation extends to arbitrary dimensions. In three dimensions,
a Cartesian coordinate system is called right-handed if the coordinate triplet i; j;k
satisfies the right-hand rule: when one curls the fingers of the right hand from the
vector i to the vector j, the thumb points in the direction of vector k. If the thumb
points in the direction opposite of the vector k, the coordinate system is called
left-handed.
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Fig. 3.6 An affine coordinate
system

3.6.2 Affine Coordinates

Affine coordinates are characterized by a skewed but otherwise regular grid of
coordinate lines, as in Fig. 3.6. The easiest way to introduce affine coordinates is
by selecting an origin O and an arbitrary triplet of vectors i; j;k which may point in
any direction and have any length. To determine the affine coordinates of a point A,

consider a vector V D �!
OA and decompose V with respect to the basis i; j;k

V D x0 i C y0 j C z0k: (3.14)

Then the point A is assigned coordinates x0, y0, z0.
The triplet i; j;k is the coordinate basis. The vector i points from the origin to

the point with coordinates .1; 0; 0/, just as in the case of Cartesian coordinates.
Cartesian coordinates are a special case of affine coordinates with an orthonormal
coordinate basis i; j;k. Any two affine coordinate systems are related by an
invertible linear transformations with a shift. In particular, any affine coordinate
system is related to a Cartesian coordinate system by a linear transformation with a
shift. The last statement may also be taken as the definition of Cartesian coordinates.

Affine coordinates can also be referred to as rectilinear coordinates, that is,
coordinate systems where the coordinate lines are straight. Coordinate systems
where the coordinate lines are not straight are called curvilinear. We now turn to
the description of the most fundamental curvilinear coordinates.

3.6.3 Polar Coordinates

The construction of a polar coordinate system in the plane is illustrated in Fig. 3.7.
An arbitrary point O is designated as the pole or origin and a ray emanating from
O is selected. This ray is known as the polar axis. Each point A in the plane is
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Fig. 3.7 A polar coordinates
system

assigned two coordinates, r and 	 , where r is the Euclidean distance from the
pole and 	 is the signed angle that the segment OA forms with the polar axis.
According to the typical sign convention, the angle 	 is positive if the angle is
formed in the counterclockwise direction. Each point in the plane is characterized
by a unique value of r , but infinitely many values of 	 . That is, coordinates .r; 	/
and .r; 	 C 2�n/ for any integer n refer to the same point in the plane. Finally, the
angle 	 is not defined at the origin O .

Notice that we described polar coordinates in absolute terms, rather than
by referencing some previously established Cartesian coordinate system. This is
important from two points of view. First, it is very much in the spirit of tensor
calculus, which proclaims that all coordinate systems are created equal and it is only
the specifics of the problem at hand that dictate the choice of a particular coordinate
system. Second, it is good to see an explicit reference to Euclidean distance and
angle and to realize that polar coordinates are intrinsically linked to the Euclidean
nature of the plane. In particular, r is measured in Euclidean units. A rescaled polar
coordinate system would no longer be called polar coordinates, but rather scaled
polar coordinates.

3.6.4 Cylindrical Coordinates

Cylindrical coordinates extend polar coordinates to three dimensions. Cylindrical
coordinates are constructed as follows. First a plane is selected and a polar
coordinate system is constructed in that plane. This special plane is referred to
as the coordinate plane. Then each point A in the Euclidean space is described
by the triplet of numbers .r; 	; z/, where r and 	 are the polar coordinates of the
orthogonal projection of A onto the coordinate plane and z is the signed Euclidean
distance between A and the coordinate axis. The sign convention usually follows
the right-hand rule. The origin O of the polar coordinates in the coordinate plane is
also called the origin with regard to the cylindrical coordinates.

The straight line that passes through O and is orthogonal to the coordinate plane
consists of points for which r D 0. It is known as the cylindrical or longitudinal
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Fig. 3.8 Cylindrical coordinates. The plot on the right gives an example of a coordinate surface
for each variable

axis. An alternative interpretation of r is the Euclidean distance from this axis. The
term cylindrical comes from the fact that points described by constant r form a
cylinder (Fig. 3.8).

3.6.5 Spherical Coordinates

Spherical coordinates r; 	; 
 are perfectly intuitive because the angles 	 and 

correspond, respectively, to longitude and latitude on the surface of the Earth, and
r is the distance to the center of the Earth. A formal construction of spherical
coordinates starts by selecting a coordinate plane with an origin O and a polar axis
that establishes the azimuthal angle 
. The coordinate r is defined as the Euclidean
distance to the origin O . The set of points corresponding to a given value of r is a
sphere of that radius with the center at the origin. Such spheres are called coordinate
spheres. Fixed r and 	 correspond to points that form a meridian on a coordinate
sphere of radius r . The final coordinate 	 , known as the longitudinal angle, varies
from 0 to � and gives the angle between OA and the longitudinal axis, a straight
line orthogonal to the coordinate plane that passes through the origin O . The plane
of the equator corresponds to 	 D �=2. Neither angle is determined at the originO .
The azimuthal angle 
 is undefined along the longitudinal axis.

3.6.6 Relationships Among Common Coordinate Systems

Exercise 21. Given a polar coordinate system, introduce Cartesian coordinates that
originate at the same pole and for which the x-axis coincides with the polar axis.
Show that the Cartesian coordinates .x; y/ are related to the polar coordinates .r; 	/
by the following identities:
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x .r; 	/ D r cos 	 (3.15)

y .r; 	/ D r sin 	: (3.16)

Exercise 22. Show that the inverse relationship is

r .x; y/ D
p
x2 C y2 (3.17)

	 .x; y/ D arctan
y

x
: (3.18)

Exercise 23. Align a Cartesian coordinate system x; y; z with a given cylindrical
coordinate system in a natural way. Show that x; y; z and r; 	; z (we hope it is OK
to reuse the letter z) are related as follows

x .r; 	; z/ D r cos 	 (3.19)

y .r; 	; z/ D r sin 	 (3.20)

z .r; 	; z/ D z: (3.21)

Exercise 24. Show that the inverse relationships are

r .x; y; z/ D
p
x2 C y2 (3.22)

	 .x; y; z/ D arctan
y

x
(3.23)

z .x; y; z/ D z: (3.24)

Exercise 25. Align a Cartesian coordinate system with a spherical coordinate
system in a natural way. Show that x; y; z and r; 	; 
 are related by

x .r; 	; 
/ D r sin 	 cos
 (3.25)

y .r; 	; 
/ D r sin 	 sin
 (3.26)

z .r; 	; 
/ D r cos 	: (3.27)

Exercise 26. Show that the inverse relationships is

r .x; y; z/ D
p
x2 C y2 C z2 (3.28)

	 .x; y; z/ D arcsin
zp

x2 C y2 C z2
(3.29)


 .x; y; z/ D arctan
y

x
: (3.30)
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3.7 Summary

In this chapter we highlighted some of the most important advantages of coordinate
systems. Of course, the coordinate approach hardly needs a champion. However,
there are many perils of using coordinate systems that include loss of geometric
insight and unmanageable complexity of calculations. We will find that tensor
calculus goes a long way towards overcoming these challenges and thus helps make
the use of coordinate systems even more powerful.

There are a handful of coordinate systems that are used in solving problems
for special geometries. Several of these—Cartesian, affine, polar, cylindrical, and
spherical—were described in this chapter.



Chapter 4
Change of Coordinates

4.1 Preview

Tensor calculus achieves invariance by establishing rules for forming expressions
that evaluate to the same value in all coordinate systems. In order to construct
expressions that do not depend on the choice of coordinates, one must understand
how individual elements transform under a change of coordinate. This chapter
is therefore devoted to the study of coordinate changes and the corresponding
changes in calculated quantities. Looking ahead, we discover that certain objects
transform according to a special rule that makes it particularly easy to form invariant
combinations. Such objects are called tensors.

In this chapter, we also introduce the essential elements of the tensor notation. We
begin to use indices in earnest and show their great utility in forming very compact
and readable expressions.

4.2 An Example of a Coordinate Change

Consider the relationship between Cartesian coordinates x; y and polar coordinates
r; 	 in the plane:

r .x; y/ D
p
x2 C y2 (4.1)

	 .x; y/ D arctan
y

x
: (4.2)

The inverse relationship is

x .r; 	/ D r cos 	 (4.3)

y .r; 	/ D r sin 	: (4.4)

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 4, © Springer Science+Business Media New York 2013
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We note that in these equations, some letters denote more than one object. In
equations (4.1) and (4.2), the letters x and y denote independent variables while r
and 	 denote functions of x and y. In equations (4.3) and (4.4), the letters x and y
denote functions or r and 	 , while r and 	 are independent variables. One may find
it helpful to use new letters, f and g, to denote these functions:

r D f .x; y/ D
p
x2 C y2 (4.5)

	 D g .x; y/ D arctan
y

x
(4.6)

and two more letters, h and i , for the inverse relationships:

x D h .r; 	/ D r cos 	 (4.7)

y D i .r; 	/ D r sin 	 (4.8)

We do not use extra letters in our discussion. Instead, we use another notational
device for distinguishing between objects such as r-the-independent-variable and
r-the-function-of-x-and-y: when we mean r-the-function, we include the functional
arguments and write r .x; y/. That makes it clear that we are talking about r-the-
function rather than r-the-independent-variable.

4.3 A Jacobian Example

Let us construct the matrix J .x; y/, often denoted in literature by @ .r; 	/ =@ .x; y/,
which consists of the partial derivatives of the functions r .x; y/ and 	 .x; y/ with
respect to each of the Cartesian variables:

J .x; y/ D
2
4

@r.x;y/

@x

@r.x;y/

@y

@	.x;y/

@x

@	.x;y/

@y

3
5 : (4.9)

This matrix is called the Jacobian of the coordinate transformation. Evaluating the
partial derivatives, we find

J .x; y/ D
2
4

xp
x2Cy2

yp
x2Cy2

�y
x2Cy2

x
x2Cy2

3
5 : (4.10)

Next, calculate the Jacobian J 0 for the reverse transformation of coordinates:

J 0 .r; 	/ D
2
4

@x.r;	/

@r
@x.r;	/

@	

@y.r;	/

@r

@y.r;	/

@	

3
5 : (4.11)
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Evaluating the partial derivatives, we find

J 0 D
"

cos 	 �r sin 	

sin 	 r cos 	

#
: (4.12)

Exercise 27. Calculate the determinant jJ j.
Exercise 28. Evaluate J at the point with Cartesian coordinates x D 1, y D 1?

Exercise 29. Calculate the determinant jJ 0j. How does it relate to jJ j?
Exercise 30. Evaluate J 0 at the point with polar coordinates r D p

2, 	 D �=4

(which is the same as the point with Cartesian coordinates x D 1, y D 1).

Exercise 31. Evaluate the matrix product

JJ 0 (4.13)

at the point with Cartesian coordinates x D 1, y D 1 or, equivalently, polar
coordinates r D p

2, 	 D �=4. Did your calculation yield the identity matrix?

4.4 The Inverse Relationship Between the Jacobians

In this section, we find that the Jacobians J and J 0 evaluated at the same point in
space are matrix inverses of each other:

JJ 0 D
�
1 0

0 1

�
: (4.14)

In order to carry out the multiplication, we must express both Jacobians in the
same coordinates. We have treated J .x; y/ as a function of x and y and J 0 .r; 	/ as
a function of r and 	 . But you may also think of J and J 0 as functions of points in
the Euclidean space. As such, they may be expressed in either coordinates. Express
the Jacobian J .x; y/ in polar coordinates:

J .r; 	/ D
2
4

x.r;	/p
x.r;	/2Cy.r;	/2

y.r;	/p
x.r;	/2Cy.r;	/2

�y.r;	/
x.r;	/2Cy.r;	/2

x.r;	/

x.r;	/2Cy.r;	/2

3
5 D

"
cos 	 sin 	

� sin 	
r

cos 	
r

#
: (4.15)

and evaluate the matrix product JJ0:
"

cos 	 sin 	

� sin 	
r

cos 	
r

#"
cos 	 �r sin 	

sin 	 r cos 	

#
D
"
1 0

0 1

#
: (4.16)
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As predicted, the result is the identity matrix. The remainder of this chapter
is devoted to demonstrating that this special relationship is holds for arbitrary
coordinate changes. This task gives us an opportunity to introduce the key elements
of the tensor notation.

Exercise 32. Show that J and J 0 are the inverses of each other by transforming
J 0 .r; 	/ to Cartesian coordinates.

Exercise 33. In three dimensions, analyze the transformation from Cartesian to
spherical coordinates and confirm that the associated Jacobians are matrix inverses
of each other.

4.5 The Chain Rule in Tensor Notation

Suppose that F is a function of three variables a, b, and c:

F D F .a; b; c/ : (4.17)

Suppose further, that we have three functions of two variables � and �:

A .�; �/ (4.18)

B .�; �/ (4.19)

C .�; �/ : (4.20)

Form a new function f .�; �/ by composition

f .�; �/ D F .A .�; �/ ; B .�; �/ ; C .�; �// : (4.21)

Use the chain rule to evaluate the derivative of f .�; �/ with respect to each of the
arguments:

@f .�; �/

@�
D @F

@a

@A

@�
C @F

@b

@B

@�
C @F

@c

@C

@�
(4.22)

@f .�; �/

@�
D @F

@a

@A

@�
C @F

@b

@B

@�
C @F

@c

@C

@�
: (4.23)

Exercise 34. Evaluate

@2f .�; �/

@�2
,
@2f .�; �/

@�@�
, and

@f 2 .�; �/

@�2
: (4.24)

Produce expression similar to equations (4.22) and (4.23).
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Exercise 35. Derive the third-order derivative @3f .�; �/ =@2�@�.

We now take several decisive steps towards converting equations (4.22)
and (4.23) to tensor form. The first step is to rename the variables a, b, and c into
a1, a2, and a3. Collectively, we refer to these variables as ai . Note that we use an
upper index, or superscript, and that it denotes enumeration and not exponentiation.

The fact that F is a function of a1, a2, and a3 can be expressed in one of three
ways:

F D F
�
a1; a2; a3

	
(4.25)

F D F
�
ai
	

(4.26)

F D F .a/ : (4.27)

We prefer equation (4.27). That is, we represent the entire collection of arguments
by a single letter and suppress the superscript i . It is important not to think of
the symbol a as a vector with components a1, a2, and a3. (A vector is a directed
segment, after all, not a triplet of numbers). Rather, F .a/ is a shorthand notation
for F

�
a1; a2; a3

	
.

The next step in converting equations (4.22) and (4.23) to tensor form is to use
the symbols A1, A2, and A3 for the three functions A, B , and C :

A1 .�; �/ (4.28)

A2 .�; �/ (4.29)

A3 .�; �/ : (4.30)

Collectively, these functions can be denoted by Ai .�; �/. Once again, we use a
superscript for enumeration.

The function f .�; �/, constructed by composing F .a/—that is F
�
a1; a2; a3

	
,

with Ai .�; �/—that is A1 .�; �/, A2 .�; �/ and A3 .�; �/, can now be expressed by
the following compact equation:

f .�; �/ D F .A .�; �// : (4.31)

When expanded, this expression reads

f .�; �/ D F
�
A1 .�; �/ ; A2 .�; �/ ; A3 .�; �/

	
: (4.32)

With the use of superscripts, the equations (4.22) and (4.23) representing the
chain rule, can be rewritten more compactly way with the help of the summation
symbol

P
:
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Fig. 4.1 Albert Einstein
(1879–1955) was a celebrated
twentieth-century scientist
and one of the earliest
proponents of tensor calculus.
Einstein suggested to
suppress the summation sign
in tensor expressions

@f .�; �/

@�
D

3X
iD1

@F

@ai
@Ai

@�
(4.33)

@f .�; �/

@�
D

3X
iD1

@F

@ai
@Ai

@�
(4.34)

We are well on our way towards tensor notation. In the expression @F=@ai , the
index i is a lower index, or subscript, since it is a superscript in the denominator. If
the expression @F=@ai were denoted by a special symbol, such as riF or Fji , the
index would necessarily appear as a subscript.

The next important element is the elimination of the summation sign. According
to the Einstein notation (or the Einstein summation convention), summation is
implied when an index appears twice, once as a subscript and once as a superscript.
Albert Einstein whose portrait appears in Fig. 4.1 suggested the convention in 1916
[10] and later joked in a letter to a friend [25]: I have made a great discovery in
mathematics; I have suppressed the summation sign each time that the summation
must be made over an index that occurs twice: : :

With the Einstein convention, equations (4.33) and (4.34) become

@f .�; �/

@�
D @F

@ai
@Ai

@�
(4.35)

@f .�; �/

@�
D @F

@ai
@Ai

@�
: (4.36)

The repeated index i , which implies summation, is called a dummy index, or a
repeated index, or a contracted index. Summation over a dummy index is called
a contraction.
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Exercise 36. Derive the expressions for

@2f .�; �/

@�2
,
@2f .�; �/

@�@�
, and

@f .�; �/

@�2
(4.37)

similar to equations (4.35) and (4.36).

The final step in converting equations (4.22) and (4.23) to tensor form is to
combine them into a single expression. Denote the independent variables � and
� by �1 and �2, or collectively �˛ . We utilize a letter from the Greek alphabet
because this index assumes values 1; 2, compared to the values 1; 2; 3 assumed by
Latin indices.

The fact that f is a function of �1 and �2 can also be expressed in one of three
ways,

f
�
�1; �2

	
(4.38)

f .�˛/ (4.39)

f .�/ ; (4.40)

and we once again choose the third way, where the index of the functional argument
is dropped. Similarly, the fact that each Ai is a function of �1 and �2 is denoted by
Ai .�/.

The composition by which f .�/ is formed can now be expressed quite concisely

f .�/ D F .A .�// : (4.41)

Note that we suppressed both indices of functional arguments. The compact
equation (4.41) in actuality represents

f
�
�1; �2

	 D F
�
A1
�
�1; �2

	
; A2

�
�1; �2

	
; A3

�
�1; �2

		
: (4.42)

We are now able to capture the two partial derivatives of f by a single elegant
expression:

@f

@�˛
D @F

@ai
@Ai

@�˛
: (4.43)

Let us review the main features of equation (4.43). First, this single expression
represents two relationships, one for ˛ D 1 and one for ˛ D 2. This makes ˛ a
live index. Second, on the right-hand side, there is an implied summation over the
dummy index i because it is repeated as a subscript and a superscript.

Exercise 37. Show that the tensor expression for the collection of second-order
partial derivatives is
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@2f

@�˛@�ˇ
D @2F

@Ai@Aj
@Ai

@�˛
@Aj

@�ˇ
C @F

@Ai
@2Ai

@�˛@�ˇ
: (4.44)

How many identities does the resulting tensor expression represent?

Exercise 38. Derive the tensor expression for the collection of third-order partial
derivatives

@3f

@�˛@�ˇ@��
: (4.45)

In this section, we introduced the essential features of the tensor notation. Over
the next few chapters we will discover just how robust the tensor notation is. It is
capable of expressing a broad range of operations in mathematics, including the
matrix product and the operation of the transpose.

4.6 Inverse Functions

The inverse matrix relationship between the Jacobians J and J 0 is a consequence
of the fact that the transformations from Cartesian to polar coordinates and back
are the functional inverses of each other. Let us first explore the inverse relationship
between functions of one variable.

What does it mean for two functions f .x/ and g .x/ to be the inverses of each
other? It means that applying f to g .x/ yields x:

g .f .x// � x: (4.46)

From this identity, we can obtain a relationship between the derivatives f 0 and g0.
Differentiating with respect to x yields

g0 .f .x// f 0 .x/ D 1; (4.47)

or

f 0 .x/ D 1

g0 .f .x//
: (4.48)

Thus, with some care, we can state that g0 and f 0 are algebraic inverses of each
other. We must remember that, in order for this statement to be true, g0 must be
evaluated at f .x/ rather than x. For example, the derivative of f .x/ D e2x at
x D 3 is 2e6. Meanwhile, the derivative of g .x/ 1

2
D ln x at f .3/ D e6 is 1

2e6
.
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Exercise 39. Derive that

d arccos x

dx
D ˙ 1p

1 � x2 (4.49)

by differentiating the identity cos arccos x D x.

Exercise 40. Suppose that f .x/ is the inverse of g .x/. Show that the second
derivatives f 00 and g00 satisfy the identity

g00 .f .x// f 0 .x/2 C g0 .f .x// f 00 .x/ D 0: (4.50)

Exercise 41. Verify equation (4.50) for f .x/ D ex and g .x/ D ln x.

Exercise 42. Verify equation (4.50) for f .x/ D arccos x and g .x/ D cos x.

Exercise 43. Differentiate the identity (4.50) one more time with respect to x to
obtain a new expressions relating higher-order derivatives of f .x/ and g .x/.

4.7 Inverse Functions of Several Variables

Equation (4.48) is the prototype of the matrix relationship between the Jacobians
J and J 0. Let us next generalize equation (4.48) for two sets of functions of two
variables. Following that, we use the tensor notation to generalize to arbitrary
dimension.

How does the concept of inverse functions generalize to two dimensions? For
example, consider the transformations between Cartesian and polar coordinates.
The two transformations (4.1), (4.2) and (4.3), (4.4) are the inverses of each other.
That means that substituting x .r; 	/ and y .r; 	/ into r .x; y/ will recover r . (As
an exercise, confirm that this is so.). Similarly, substituting x .r; 	/ and y .r; 	/ into
r .x; y/ will recover 	 . Express these relationships analytically:

r .x .r; 	/ ; y .r; 	// � r (4.51)

	 .x .r; 	/ ; y .r; 	// � 	; (4.52)

More generally, suppose that the sets of functions f .x; y/, g .x; y/ and
F .X; Y /, G .X; Y / are the inverses of each other. By analogy with (4.51)
and (4.52), the inverse relationship can be captured by the identities

F .f .x; y/ ; g .x; y// D x (4.53)

G .f .x; y/ ; g .x; y// D y: (4.54)

From these two identities we can obtain four relationships for the partial derivatives
of F , G, f and g. These relationships are by differentiating each of the identities
with respect to each independent variables. Differentiating the first identity (4.53)
with respect to each variable yields
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@F

@X

@f

@x
C @F

@Y

@g

@x
D 1 (4.55)

@F

@X

@f

@y
C @F

@Y

@g

@y
D 0: (4.56)

Differentiating the second identity (4.54) with respect to each variable yields

@G

@X

@f

@x
C @G

@Y

@g

@x
D 0 (4.57)

@G

@X

@f

@y
C @G

@Y

@g

@y
D 1: (4.58)

Combining the four identities into a single matrix relationship yields

"
@F
@X

@F
@Y

@G
@X

@G
@Y

#"
@f

@x

@f

@y

@g

@x

@g

@y

#
D
�
1 0

0 1

�
; (4.59)

which is precisely the relationship we were hoping to discover. It shows that the
Jacobians J and J 0 for general coordinate changes are the matrix inverses of each
another, provided they are evaluated at the same physical point. The one exciting
task that remains is to generalize this relationship to an arbitrary dimension. We
will do so in the next section with the help of the tensor notation. You will find
that the tensor notation actually makes the N -dimensional case simpler than the
two-dimensional case!

Exercise 44. What is the equivalent of equations (4.51) where the roles of Cartesian
and polar coordinates are reversed?

x .: : :/ D x (4.60)

y .: : :/ D y‹ (4.61)

Exercise 45. Show that the second-order partial derivatives of F andG, and f and
g are related by the equation

@2F

@X2

�
@f

@x

�2
C2

@2F

@X@Y

@f

@x

@g

@x
C @2F

@Y 2

�
@g

@x

�2
C @F

@X

@2f

@x2
C @F

@Y

@2g

@x2
D 0: (4.62)

Derive the remaining three second-order relationships.
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4.8 The Jacobian Property in Tensor Notation

In this section we generalize the inverse matrix relationship between Jacobians to
arbitrary dimension. Along the way, we introduce an important new element of the
tensor notation: the Kronecker delta symbol ıij .

Consider two alternative coordinate systems Zi and Zi 0 in an N -dimensional
space. Notice that we placed the prime next to the index rather than the letter Z.
Let us call the coordinates Zi unprimed and the coordinates Zi 0 primed. We also
use the symbols Zi 0 and Zi to denote the functions that express the relationships
between the coordinates:

Zi 0 D Zi 0 .Z/ (4.63)

Zi D Zi
�
Z0	 : (4.64)

The first expression represents N relationships analogous to equations (4.1)
and (4.2) and the second represents N relationships analogous to equations (4.3)
and (4.4).

As sets of functions, Zi and Zi 0 are the inverses of each other. This fact can be
expressed either by the identity

Zi
�
Z0 .Z/

	 � Zi (4.65)

or by the identity

Zi 0
�
Z
�
Z0		 � Zi 0 : (4.66)

Note all the tensor conventions in play here. The indices of function arguments
are suppressed. Several relationships are captured by a single expression with a
live index. Note also, that in the first identity, the symbols Zi (on the left-hand
side) and Z0 (which isZi 0 with the index suppressed) represent functions, while the
symbols Z (which is Zi with the index suppressed) and Zi (on the right-hand side)
represent the independent variables. Equation (4.65) is analogous to equations (4.53)
and (4.54) while equation (4.66) is analogous to equations

f .F .X; Y / ;G .X; Y // D X (4.67)

g .F .X; Y / ;G .X; Y // D Y: (4.68)

Let us analyze the first identity Zi .Z0 .Z// D Zi . It represents N relationships
and each of the N relationships can be differentiated with respect to each of the
N independent variables. This will yield N2 relationships for the first-order partial
derivatives of the functions Zi and Zi 0 .

With the help of the tensor notation, all of the operations can be carried out in a
single step. We differentiate the identity Zi .Z0 .Z// D Zi with respect to Zj . It is
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essential that the differentiation is to take place with respect to Zj rather than Zi ,
because our intention is to differentiate each of the identities in Zi .Z0 .Z// D Zi

with respect to each of the variables. The resulting expression will have two live
indices i and j .

The result of the differentiation reads

@Zi

@Zi 0

@Zi 0

@Zj
D @Zi

@Zj
: (4.69)

This single expression with two live indices i and j is analogous to equa-
tions (4.55)–(4.58). The objects @Zi=@Zi 0 and @Zi 0=@Zj are precisely the Jacobians
of the coordinate transformations. Let us now denote these Jacobians by the indicial
symbols J i

i 0
and J i

0

i :

J ii 0 D @Zi .Z0/
@Zi 0

(4.70)

J i
0

i D @Zi 0 .Z/

@Zi
: (4.71)

Incorporating these symbols into equation (4.69), it reads

J ii 0J
i 0

j D @Zi

@Zj
(4.72)

and we must keep in mind that J i
i 0

and J i
0

i must be evaluated at the same physical
point.

Now, what of the partial derivative @Zi=@Zj ? The symbol Zi on the right-hand
side of equation (4.65) represents the independent variable or the collection of the
independent variables. The symbol Zj also represents the independent variable.
Therefore, @Zi=@Zj is 1 if Zi and Zj are the same variable, and 0 otherwise.
There is a special symbol that denotes such a quantity: the Kronecker delta ıij also
known as the Kronecker symbol. It is defined as follows

ıij D
(
1, if i D j

0, if i ¤ j:
(4.73)

From the linear algebra point of view, the Kronecker delta can be thought of as the
identity matrix. It is an object of utmost importance and will play a crucial role in
the remainder of the textbook.

With the help of the Kronecker delta, we can rewrite equation (4.72) in its final
form

J ii 0J
i 0

j D ıij : (4.74)

This equation expresses the inverse relationships between the Jacobians that we have
set out to demonstrate.
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Exercise 46. By differentiating

Zi 0
�
Z
�
Z0		 D Zi 0 (4.75)

show that

J i
0

i J
i
j 0 D ıi

0

j 0 : (4.76)

Exercise 47. Derive equation (4.76) from (4.74) by multiplying both sides by J j
j 0 .

Exercise 48. Introduce the symbols J i
i 0j 0 and J i

0

ij for the second-order partial
derivatives

J ii 0j 0 D @2Zi .Z0/
@Zi 0@Zj 0

(4.77)

J i
0

ij D @2Zi 0 .Z/

@Zi@Zj
: (4.78)

Show that

J ii 0j 0J
i 0

j J
j 0

k C J ii 0J
i 0

jk D 0: (4.79)

How many identities does this tensor relationship represent?

Exercise 49. What is J i
i 0j 0 for a transformation from one affine coordinate system

to another?

Exercise 50. Derive the identity

J ii 0j 0J
i 0

j C J ii 0J
i 0

jkJ
k
j 0 D 0 (4.80)

by contracting both sides of equation (4.79) with J k
k0 and subsequently renaming

j 0 ! k0. Verify this relationship for the transformation from Cartesian to polar
coordinates.

Exercise 51. Show that

J ii 0j 0 C J k
0

kj J
i
k0J

j

j 0J
k
i 0 D 0: (4.81)

Equations (4.79), (4.80), (4.81) will prove to be of critical importance in Chap. 8.

Exercise 52. Derive third-order relationships of the same kind.

Exercise 53. Consider three changes of variables: from Zi to Zi 0 to Zi 00 and back
to Zi . Show that

J ii 0J
i 0

i 00J
i 00

j D ıij : (4.82)
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4.9 Several Notes on the Tensor Notation

We have already encountered many elements of the tensor notation—and seen many
of its benefits. In this section, we point out a few properties of the notation that have
already been used in this chapter, but could be clarified further.

4.9.1 The Naming of Indices

Indices are frequently needed to be renamed depending on the context in which an
object is being used. Sometimes the name of the index does not matter at all. For
example, the collection of the partial derivatives of a scalar field F can be referred
to as @F=@Zi or @F=@Zj—any letter (preferably a lowercase letter from the English
alphabet) can be used to denote the index. Similarly, the Jacobian J i

i 0
can be called

J
j

j 0 or J i
j 0 or J j

i 0
—the names of indices do not matter until the object is used in

an expression. When referring to an object T i , we may call it T j or T k or T n

depending on what fits the current context.
A repeated index always denotes contraction. In particular, a repeated index must

appear exactly twice, once as upper and once as lower. For example, the collection
of second-order partial derivatives

@2F

@Zi@Zj
(4.83)

cannot be denoted by

@2F

@Zi@Zi
: (4.84)

This expression could be interpreted as a second-order derivative with respect to the
same variable, for instance, @2F=@r2 and @2F=@	2. However, tensor calculus does
not interpret it this way. By convention, objects with repeated indices are disallowed,
except in a contraction.

When objects are combined to form longer expressions, renaming indices
becomes more restricted. Given a contraction, such as

@F

@Zi

@Zi

@�˛
; (4.85)

the index i , if renamed, should be renamed in both instances:

@F

@Zi

@Zi

@�˛
D @F

@Zj

@Zj

@�˛
: (4.86)
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The repeated index indicating contraction can be renamed arbitrarily, as long as the
new name does not appear in another part of the term, causing a clash. For example,
in the expression

@F

@Zi

@Zi

@�˛
@F

@Zj

@Zj

@�ˇ
(4.87)

the index i can be changed to any letter, except j !
Finally, in tensor identities, live indices must be renamed consistently. For

example, suppose that

T˛ D @F

@Zi

@Zi

@�˛
: (4.88)

Then ˛ can be changed to ˇ on both sides of the identity:

Tˇ D @F

@Zj

@Zj

@�ˇ
: (4.89)

Notice that, for good measure, we also renamed the dummy index from i to j .

4.9.2 Commutativity of Contractions

We have already encountered several expressions that include two or more contrac-
tions. One such expression was J i

i 0
J i

0

jkJ
k
j 0 . Should we have been concerned with the

order of contractions? The answer is no because contractions commute, that is, they
can be carried out in any order.

For an illustration, consider an object T ijkl with four indices and the double

contraction T ijij . The expression T ijij can be interpreted in three ways. First, we can

imagine that contraction on i takes place first, yielding the object U j

l D T
ij

il . Fully

expanding, U j

l is the sum

U
j

l D T
1j

1l C T
2j

2l C T
3j

3l : (4.90)

Subsequently, contraction on the remaining indices yields U j
j D T

ij
ij :

T
ij
ij D T 1111 C T 1212 C T 1313 C T 2121 C T 2222 C T 2323 C T 3131 C T 3232 C T 3333 : (4.91)

Alternatively, we can contract on j first (yielding a temporary object V i
k D T

ij

kj )
and subsequently on i . You can confirm that this sequence will result in the same
sum. Finally, the contractions can be viewed as simultaneous. That is, the terms
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in the sum are formed by letting the indices i and j run through the N2 possible
combinations. It is clear that in this case the end result is also the same.

4.9.3 More on the Kronecker Symbol

The Kronecker delta ıij will prove to be an extremely important object. Its
importance goes beyond its linear algebra interpretation as the identity matrix. For
now, we would like to say a few words about its index-renaming effect in indicial
expressions.

Consider the expression Tiıij . What is the value of this object for j D 1? It is

Tiı
i
1 D T1ı

1
1 C T2ı

2
1 C T3ı

3
1: (4.92)

The only surviving term is T1ı11 which equals T1. Similarly for j D 2, Tiıij is T2.
And so forth. Summarizing,

Tiı
i
j D Tj : (4.93)

Thus, the effect of contracting Ti with ıij is to rename the index i to j . Similarly,

T iı
j
i D T j : (4.94)

The last two equations show why the Kronecker delta can also be viewed as the
identity matrix: when contracted with an object, the result is the original object.

Exercise 54. Simplify the expression Aij ıik .

Exercise 55. Simplify the expression ıij ı
j

k .

Exercise 56. Evaluate the expression ıij ı
j
i .

Exercise 57. Evaluate the expression ıii ı
j
j .

Exercise 58. Simplify the expression ıij SiS
j .

Exercise 59. Show that the object ıri ı
s
j �ısi ırj is skew-symmetric in i and j as well

as in r and s.

4.10 Orientation-Preserving Coordinate Changes

Let J be the determinant of the Jacobian J i
i 0

. We express this relationship in the
following way

J D ˇ̌
J ��0
ˇ̌
: (4.95)
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The coordinate change is called orientation-preserving if J > 0. The coordinate
change is called orientation-reversing if J < 0. These definitions are local: the
orientation-preserving property may vary from one point to another. Since the
Jacobians J i

i 0
and J i

0

i are matrix inverses of each other, the determinant of J i
0

i is
J�1. Therefore, if a change of coordinates is orientation-preserving, then so is its
inverse. The orientation-preserving property of coordinate changes is particularly
important for the discussion of the volume element and the Levi-Civita symbols in
Chap. 9.

If two coordinate systems are related by an orientation-preserving change of
coordinates, then one of those coordinate systems is said to be positively oriented
with respect to the other. In the three-dimensional space, the right-hand rule gives us
an opportunity to characterize the orientation of a coordinate system in an absolute
sense. A Cartesian coordinate system is positive if its coordinate basis vectors i,
j, k are ordered according to the right-hand rule. Any other coordinate system is
called positive in the absolute sense if it is positively oriented with respect a positive
Cartesian coordinate system.

4.11 Summary

In this chapter, we discussed coordinate changes. Tensor calculus achieves invari-
ance by constructing expressions where the eventual values remain unchanged
under a change of coordinates. This is why the discussion of coordinate changes
is critical. In the next chapter, we begin to introduce some of the most important
objects in Euclidean spaces. In Chap. 6, we study how these objects transform
under a change of coordinates. We find that some objects, characterized as tensors,
transform according to a very special rule. Other objects (e.g., partial derivatives of
tensors) do not transform according to the same rule. This lack of the tensor property
poses a problem in constructing invariant expressions. This problem is addressed
in Chap. 8 which introduces a new kind of tensor-property-preserving differential
operator: the covariant derivative.

In this chapter we also presented all the essential elements of the tensor notation.
We saw how the indicial notation leads to very compact expressions that are easily
interpreted. We also observed that indices naturally arise as lower indices and upper
indices, and that the two types of indices seem to be in perfect balance. This is not
a coincidence: the placement of the index helps distinguish between covariant and
contravariant tensors.



Chapter 5
The Tensor Description of Euclidean Spaces

5.1 Preview

Armed with the tensor notation introduced in Chap. 4, we present a differential
description of Euclidean spaces in tensor terms. The objects presented here are of
great importance in the coordinate-based description of space and play a central role
in the remainder of this book.

All objects, except the position vector R, introduced in this chapter depend on
the choice of coordinates. That is, if the same definition is applied in different
coordinates, the resulting values are different. Such objects are called variants.
Objects, such as the position vector R, the values of which are the same in
all coordinates, are called invariants. For some variants, their values in different
coordinate systems are related in a particular way. Such objects are called tensors.
The discussion of the tensor property takes place in Chap. 6.

5.2 The Position Vector R

The position vector (or the radius vector) is a vector R that represents the position of
points in the Euclidean space with respect to an arbitrarily selected point O , known
as the origin. The concept of the position vector is possible only in Euclidean spaces.
After all, the position vector is straight, and straightness is a characteristic of the
Euclidean space. If we were studying the surface of a sphere and were allowed to
consider only the points on the surface and not in the surrounding space, we would
not be able to introduce the position vector.

The position vector R is introduced without the help of coordinates. Objects that
can be constructed without a reference to a coordinate system are called geometric.
The vector gradient of a scalar field is another example of a geometric object.
Some of the objects we construct with the help of coordinate systems turn out
to be independent of coordinates. Such objects are called invariant. Experience

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 5, © Springer Science+Business Media New York 2013
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shows that all invariant objects are geometric. As a result, the terms geometric and
invariant are often used interchangeably. That is not to say that finding the geometric
interpretation for an invariant object is always straightforward.

5.3 The Position Vector as a Function of Coordinates

Refer the Euclidean space to a coordinate systemZi . In the spirit of tensor calculus,
the coordinate system Zi is arbitrary. In other words, we do not assume that
it possesses any special characteristics. In particular, it is certainly not assumed
Cartesian or affine. In the three-dimensional Euclidean space, the index i has values
1; 2; 3 and Zi stands for Z1, Z2, Z3. When reading this chapter, it is probably best
to keep the three-dimensional case in mind. Of course, all of the concepts are valid
in any number of dimensions.

In a Euclidean space referred to a coordinate system, the position vector R is a
function of the coordinates Zi . That is, to each valid combination of Z1, Z2, and
Z3, there corresponds a specific value of the position vector R. The coordinates
uniquely determine the point in the Euclidean space which, in turn, corresponds to
a particular value of the position vector R. Denote this function by R .Z/:

R D R .Z/ : (5.1)

This notation is consistent with the convention described in Sect. 4.5 according to
which we suppress the indices of the function arguments.

The function R .Z/ is the starting point in an important sequence of identities.
It is therefore important to have a clear understanding of each of the elements of
equation (5.1). This equation features the symbol R in two different roles. On the
left-hand side, R represents the geometric position vector introduced in Sect. 5.2. On
the right-hand side, R stands for the vector-valued function that yields the position
vector for every valid combination of coordinates. As it is often the case, the same
letter is used to represent two different objects. We distinguish among the objects
denoted by the same letter by the full signature of the expression. In the case of
equation (5.1), the signature includes the collection of arguments. Thus, R is the
invariant position vector while R .Z/ is a vector-valued function of three variables.

The function R .Z/ can be differentiated with respect to each of its arguments in
the sense of Sect. 2.9. We reiterate that it is essential to treat R as a primary object
that is subject to its own set of rules and operations. It is counterproductive to think
of R as a triplet of components with respect to a some Cartesian grid. We have not
and will not (unless it is convenient for a particular problem) introduce a background
Cartesian coordinate system. Thus, there is no basis with respect to which R could
be decomposed. Fortunately, we can perform quite a number of operations on vector
quantities such as R, including differentiation with respect to a parameter.
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Exercise 60. Consider a curve parametrized by its arc length s, and consider the
function R .s/. Explain, on the basis of your geometric intuition, why T D R0 .s/
is the unit tangent vector. Note that the condition jR0 .s/j D 1 may be taken as the
definition of arc length s.

5.4 The Covariant Basis Zi

The covariant basis is obtained from the position vector R .Z/ by differentiation
with respect to each of the coordinates:

Zi D @R .Z/
@Zi

: (5.2)

The term covariant refers to the special way in which the vectors Zi transform under
a change of coordinates. This is studied in Chap. 6.

The covariant basis is a generalization of the affine coordinate basis to curvilinear
coordinate systems. It is called the local coordinate basis since it varies from
one point to another. It is sometimes described as the local basis imposed by the
coordinate system. The letterZ is now used to denote an additional object. However,
the symbols Zi and Zi cannot be mistaken for each other since the bold Z in Zi is a
vector while the plain Z in Zi is a scalar.

The tensor notation may still be quite new to you. Therefore, let us expand the
relationships captured by equation (5.2). Since the index i is live, equation (5.2)
defines three vectors Z1, Z2, and Z3:

Z1 D @R
�
Z1;Z2;Z3

	
@Z1

I Z2 D @R
�
Z1;Z2;Z3

	
@Z2

I Z3 D @R
�
Z1;Z2;Z3

	
@Z3

:

(5.3)
The argument-collapsing convention of Sect. 4.5 shortens these equation to

Z1 D @R .Z/
@Z1

I Z2 D @R .Z/
@Z2

I Z3 D @R .Z/
@Z3

: (5.4)

Finally, encoding this set of identities with the index i transforms them to the
ultimate tensor form (5.2).

Figure 5.1 shows the covariant basis Zi in the plane referred to Cartesian, affine,
and polar coordinate systems. In affine coordinates, the covariant basis Zi coincides
with the coordinate basis i; j. In curvilinear coordinates, the covariant basis varies
from point to point.

The covariant basis Zi is a primary object. Once again, you should not imagine a
background Cartesian coordinate system and decompose the vectors Zi with respect
to that system’s coordinate basis. It is counterproductive to think of Zi as a set of
N2 coordinates, whereN is the dimension of the space. The vectors Zi are just that:
vectors.

Polcz Peter
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Fig. 5.1 The covariant basis Zi in Cartesian, affine, and polar coordinates in two dimensions

At all points in the Euclidean space, the covariant basis Zi provides a convenient
basis for decomposing other vectors. The components V i of a vector V are the scalar
values that produce V when used in a linear combination with the vectors Zi :

V D V 1Z1 C V 2Z2 C V 3Z3: (5.5)

In the tensor notation

V D V iZi : (5.6)

The values V i are called the contravariant components of the vector V. The term
contravariant refers to the way in which the object V i transforms under a change of
coordinates. This is discussed in Chap. 6. Since Zi varies from one point to another,
two identical vectors U and V decomposed at different points of the Euclidean space
may have different contravariant components.

Exercise 61. What are the components of the vectors Zi with respect to the
covariant basis Zj ? The answer can be captured with a single symbol introduced
in Chap. 4.

5.5 The Covariant Metric Tensor Zij

By definition, the covariant metric tensor Zij consists of the pairwise dot products
of the covariant basis vectors:

Zij D Zi � Zj : (5.7)

The metric tensor is one of the central objects in tensor calculus. It is often referred
to as the fundamental tensor. In linear algebra, the covariant metric tensor is
known as the inner product matrix or the Gram matrix. Because the dot product
is commutative (Zi � Zj D Zj � Zi ), the metric tensor is symmetric:

Zij D Zji : (5.8)
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It carries complete information about the dot product and is therefore the main
tool in measuring lengths, areas, and volumes. Suppose that two vectors U and V
are located at the same point and that their components are U i and V i . Then the dot
product U � V is given by

U � V D ZijU
iV j : (5.9)

This can be demonstrated as follows:

U � W D U iZi � V jZj D �
Zi � Zj

	
U iV j D ZijU

iV j :

Exercise 62. Explain why the covariant basis, interpreted as a matrix, is positive
definite.

Exercise 63. Show that the length jVj of a vector V is given by

jVj D
q
Zij V iV j : (5.10)

5.6 The Contravariant Metric Tensor Z ij

The contravariant metric tensor Zij is the matrix inverse of Zij :

ZijZjk D ıik: (5.11)

From linear algebra, we know that AB D I implies BA D I (the left inverse is the
right inverse). Therefore, contracting on the other index also yields in the Kronecker
symbol:

ZijZkj D ıik: (5.12)

This relationship also follows from the symmetry of Zij , but the inverse argument
is more general.

Since the inverse of a symmetric matrix is symmetric (prove this), the contravari-
ant metric tensor is symmetric

Zij D Zji : (5.13)

Exercise 64. Prove that Zij is positive definite.

Polcz Peter
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5.7 The Contravariant Basis Zi

The contravariant basis Zi is defined as

Zi D ZijZj : (5.14)

Since Zij is symmetric, it makes no difference which index is contracted in
equation (5.14). Thus we may also write

Zi D ZjiZj : (5.15)

The bases Zi and Zi are mutually orthonormal:

Zi � Zj D ıij : (5.16)

That is, each vector Zi is orthogonal for each Zj; for which i¤j . Furthermore,
the dot product of Zi with Zi is 1. The latter relationship cannot be written as Zi �
ZiD1 since the repeated index would invoke the summation convention. Sometimes,
uppercase indices are used to indicate a relationship for a single value of the repeated
index: ZI � ZI D 1.

Exercise 65. Demonstrate equation (5.16). Hint: Zi � Zj D ZikZk � Zj .

Exercise 66. Show that the angle between Z1 and Z1 is less than �=2.

Exercise 67. Show that the product of the lengths
ˇ̌
Z1
ˇ̌ jZ1j is at least 1.

Exercise 68. Show that the covariant basis Zi can be obtained from the contravari-
ant basis Zj by

Zi D ZijZj : (5.17)

Hint: Multiply both sides of equation (5.14) by Zik .

Exercise 69. Show that the pairwise dot products of the contravariant basis ele-
ments yields the contravariant metric tensor:

Zi � Zj D Zij : (5.18)

Exercise 70. Argue from the linear algebra point of view that equation (5.16)
uniquely determines the vectors Zi .

Exercise 71. Therefore, equation (5.16) can be taken as the definition of the
contravariant basis Zi and equation (5.18) can be taken as the definition of the
contravariant basis Zij . Show that the property (5.11) follows these definitions.
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5.8 The Metric Tensor and Measuring Lengths

The metric tensor plays a fundamental role in calculations. It is responsible for
calculating lengths of vectors since jVj D p

Zij V iV j . It is also the key to
calculating lengths of curves. You are familiar with the following formula for the
length L of a curve given in Cartesian coordinates by .x .t/ ; y .t/ ; z .t//:

L D
Z b

a

s�
dx

dt

�2
C
�
dy

dt

�2
C
�
d z

dt

�2
dt: (5.19)

Note that this formula may also be taken as the definition of the length of a curve.
(See Exercise 60 for an alternative equivalent approach.) What is the generalization
of equation (5.19) to arbitrary coordinates Zi in which the curve is given by�
Z1 .t/ ; Z2 .t/ ; Z3 .t/

	
. The general formula for L is

L D
Z b

a

r
Zij

dZi

dt

dZj

dt
dt: (5.20)

Why is the formula (5.20) correct? In Cartesian coordinates, the metric tensorZij is
represented by the identity matrix. Therefore, since only the diagonal terms survive,
equation (5.20) agrees with equation (5.19). So we are on the right track! The
complete proof of equation (5.20) is found in Chap. 6. The key to the proof is the
tensor property of all the elements in equation (5.20).

Equation (5.20) can be interpreted in another fascinating way. Suppose you find
yourself in a Euclidean space referred to some coordinate system Zi . Suppose
also, that the only measurement you are allowed to take is the length of any curve
segment. From equation (5.20), it follows that this would allow you to calculate the
metric tensor at any point. Thus, lengths of curves can be calculated from the metric
tensor and vice versa.

Consider the point P D �
Z1
0;Z

2
0 ; Z

3
0

	
and the curve given parametrically by�

Z1
0 C t; Z2

0 ; Z
3
0

	
. This curve is the coordinate line corresponding to Z1 that passes

through P at t D 0. Denote the length of this curve from the point P by L11 .t/.
Since only a single term survives under the square root in equation (5.20),

L11 .t/ D
Z t

0

p
Z11 .h/dh: (5.21)

By the fundamental theorem of calculus,

L0
11 .0/ D

p
Z11 at P: (5.22)

We can similarly compute the remaining diagonal entries of Zij .
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To compute the off-diagonal terms, say Z12, consider the curve
�
Z1
0 C t; Z2

0

Ct; Z3
0

	
and denote its length from the point P by L12 .t/. This time, three terms

survive under the square root in equation (5.20):

L12 .t/ D
Z t

0

p
Z11 .h/C 2Z12 .h/CZ22 .h/dh: (5.23)

Thus,

L0
12 .0/ D

p
Z11 C 2Z12 CZ22 at P: (5.24)

Since the diagonal terms Z11 and Z22 are already available, we are now able to
compute Z12 and, similarly, all the remaining entries of the metric tensor.

5.9 Intrinsic Objects and Riemann Spaces

Objects, such as the metric tensor, which can be obtained by measuring distances
and computing the derivatives of those distances, are called intrinsic. Therefore, all
objects that can be expressed in terms of the metric tensor and its derivatives are also
intrinsic. Most notably, the Christoffel symbol presented below and the Riemann–
Christoffel tensor presented in Chap. 8 are intrinsic. Intrinsic objects are particularly
important in general relativity and in the study of embedded surfaces to which Parts
II and III of this book are devoted.

It turns out that much of differential geometry and tensor calculus can be
constructed from the metric tensor as the starting point, bypassing the position
vector R and the covariant basis Zi . Differential geometry that starts with the metric
tensor is called Riemannian geometry. Its exclusive focus is on intrinsic objects.
In Riemannian geometry, the dot product is defined in terms of the metric tensor,
rather than the other way around. Thus, the metric tensor is a primary concept and
equation (5.9) is the definition of the dot product. The properties of the space are
dictated by the choice of the metric tensor. The metric tensor need not come from
a Euclidean dot product, but can be rather arbitrarily assigned subject to certain
conditions such as symmetry and positive definiteness. A coordinate space in which
the metric tensor field is a priori given is called a Riemann space. The Riemannian
perspective is critically important, even in Euclidean spaces.

5.10 Decomposition with Respect to a Basis by Dot Product

Linear algebra offers an elegant algorithm for calculating the components of a vector
with respect to an orthogonal basis. Suppose that e1; : : : ; eN is an orthogonal basis,
that is
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�
ei ; ej

	 D 0, if i ¤ j: (5.25)

Let Vi be the components of a vector V with respect to this basis:

V D V1e1 C � � � C VN eN : (5.26)

Dot both sides of this equation with ei . Since all but one term on the right-hand side
vanish by the orthogonality of the basis, we find

.V; ei / D Vi .ei ; ei / : (5.27)

Therefore, the coefficient Vi is given by the simple expression

Vi D .V; ei /
.ei ; ei /

: (5.28)

This expression simplifies further if the basis is orthonormal, that is, each basis
vector is unit length:

.ei ; ei / D 1: (5.29)

With respect to an orthonormal basis, Vi is given by a single dot product

Vi D .V; ei / : (5.30)

If the basis e1; : : : ; eN is not orthogonal, it is still possible to calculate Vi by
evaluating dot products. However, the simplicity of the algorithm is lost. Instead
of being able to determine each component Vi individually, one needs to solve an
N �N system of coupled equations

2
4 .e1; e1/ � � � .e1; eN /

� � � � � � � � �
.eN ; e1/ � � � .eN ; eN /

3
5
2
4 V1� � �
VN

3
5 D

2
4 .V; e1/� � �
.V; eN /

3
5 : (5.31)

Note that the matrix on the left-hand side corresponds to the metric tensor Zij .
In tensor calculus, this relatively complicated procedure is captured by a formula

that is as simple as equation (5.30). Namely, suppose that V i are the contravariant
components of the vector V with respect to Zi . Then

V i D V � Zi : (5.32)

Note that V is dotted with the contravariant basis Zi . The proof of this relationship
is simple

V � Zi D V jZj � Zi D V j ıij D V i : (5.33)
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The formula in equation (5.32) is equivalent to equation (5.31) but has the simplicity
of equation (5.30). Equation (5.32) states that V i can be calculated by single dot
product even if the basis is not orthogonal. Of course, the single dot product involves
the contravariant vector Zi , the calculation of which involved the matrix inversion
of the covariant metric tensor. Therefore, the algorithm implied by equation (5.32) is
no simpler than that implied by equation (5.31). It is the same algorithm. However,
its expression in tensor calculus is far more effective and concise.

5.11 The Fundamental Elements in Various Coordinates

This section catalogs the fundamental elements in the Euclidean space for the most
common coordinate systems. In affine and polar coordinates, all elements can be
calculated easily by geometric reasoning. Spherical coordinates pose a little bit more
of a challenge. In order to calculate covariant basis Zi in spherical coordinates,
a background Cartesian coordinate system is introduced. Earlier, we emphatically
argued against background Cartesian coordinates. On the other hand, this section
deals with a particular problem that can be solved more easily by choosing a
convenient coordinate system. However, it is important to continue to think of the
bases Zi and Zi as primary objects that do not require another, more fundamental,
coordinate system in order to be expressed. To reinforce this perspective, we
illustrate the covariant basis Zi in Fig. 5.5 without the scaffolding of the background
Cartesian coordinates.

5.11.1 Cartesian Coordinates

The covariant basis Zi coincides with the coordinate basis i; j;k. The coordinate
basis arises naturally in affine (and therefore Cartesian) coordinates as a set of vec-
tors that point along the coordinate axes and have the length of one corresponding
coordinate unit.

The geometric algorithm, by which the derivative Z1 D @R=@x is evaluated, is
illustrated in Fig. 5.2. For any h, the vector

V D R .x C h; y; z/ � R .x; y; z/
h

(5.34)

is the unit vector that points in the direction of the x-axis. Therefore, V is the
Cartesian basis element i. The limit of V as h ! 0 is also i, and we conclude
that the covariant basis Zi coincides with the coordinate basis:

Z1 D iI Z2 D jI Z3 D k:
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Fig. 5.2 Geometric
construction of the basis
vector Z1 D @R=@x in
Cartesian coordinates

Consequently, the covariant and the contravariant metric tensors have only three
nonzero entries:

Z11 D Z22 D Z33 D 1 (5.35)

Z11 D Z22 D Z33 D 1: (5.36)

In the matrix notation, the metric tensors are presented by the identity matrix:

Zij ;Z
ij D

2
41 0 00 1 0

0 0 1

3
5 : (5.37)

The contravariant basis Zi consists of the same vectors as the covariant basis Zi :

Z1 D iI Z2 D jI Z3 D k: (5.38)

5.11.2 Affine Coordinates

A similar geometric argument shows that in affine coordinates, the covariant basis
Zi coincides with the coordinate basis i; j;k. The metric tensor Zij is therefore
unchanged from one point to another. Its entries are pairwise dot products of the
coordinate basis vectors:
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Fig. 5.3 In affine coordinates, the covariant basis Zi lines up perfectly with the coordinate grid.
This figure also shows the contravariant basis Zi . Note the orthogonality of the vectors Z1 D i and
Z1, and Z2 D j and Z2

Zij D
2
4 i � i i � j i � k

j � i j � j j � k
k � i k � j k � k

3
5 : (5.39)

The metric tensor is diagonal only if the affine coordinate system is orthogonal.
The contravariant metric Zij is obtained by inverting the matrix (5.39) and the
contravariant basis is obtained by contracting Zij with Zi .

We illustrate this calculation with an example in two dimensions illustrated in
Fig. 5.3. Suppose that the affine coordinates are such that the angle between Z1 D i
and Z2 D j is �=3 and that jZ1j D 2 and jZ2j D 1. Then

Zij D
�
4 1

1 1

�
(5.40)

and

Zij D
�

1
3

� 1
3

� 1
3

4
3

�
: (5.41)

The contravariant basis vectors are therefore given by

Z1 D 1

3
i � 1

3
j (5.42)

Z2 D �1
3

i C 4

3
j: (5.43)

Exercise 72. Confirm that Z1 in equation (5.42) is orthogonal to Z2 and that Z2 in
equation (5.43) is orthogonal to Z1.

Exercise 73. Confirm that Z1 � Z1 D Z2 � Z2 D 1.

Exercise 74. Confirm that Z1 � Z2 D Z12 D �1=3.
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Fig. 5.4 Geometric
construction of the vector
Z1 D @R=@r in polar
coordinates

5.11.3 Polar and Cylindrical Coordinates

Consider polar coordinates in the plane. The geometric construction that leads to Z1
is illustrated in Fig. 5.4. It is clear that the vector

V D R .r C h; 	/ � R .r; 	/
h

(5.44)

points radially away from the originO . Furthermore, the length of the vector�R D
R .r C h; 	/�R .r; 	/ in the denominator is h. Therefore, V D �R=h is unit length
for all h. We conclude that Z1 is a unit vector that points in the radial direction.

The vector Z2 is more challenging, but we have already performed the calculation
that gives Z2 in Sect. 2.9 of Chap. 2. In that section, we showed that, for r D 1, Z2 is
the unit vector in the direction orthogonal to Z1. It is also easy to see that the length
of Z2 is proportional to r by noticing that the denominator in

V D R .r; 	 C h/ � R .r; 	/
h

(5.45)

is exactly twice as large at r D 2 as it is at r D 1. This relationship also holds in
the limit as h ! 0 and we conclude that Z2 is a vector of length r orthogonal to Z1.
The covariant basis for polar coordinates is seen in Fig. 5.1.

A coordinate system with an orthogonal covariant basis is called orthogo-
nal. Thus, polar coordinates are orthogonal. Orthogonal coordinate systems are
characterized by diagonal metric tensors. The metric tensors for polar coordinates
are given by

Zij D
�
1 0

0 r2

�
I Zij D

�
1 0

0 r�2
�
: (5.46)
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Fig. 5.5 The covariant basis
Zi at the point R D 2,
	 D �=4, 
 D 0

The contravariant basis vector Z1 equals Z1, while Z2 is colinear with Z2 and has
length 1=r .

Exercise 75. Show that Z3 in cylindrical coordinates is a unit vector that points in
the direction of the z-axis.

Exercise 76. Show that metric tensors in polar coordinates are given by

Zij D
2
41 0 00 r2 0

0 0 1

3
5 I Zij D

2
4 1 0 0

0 r�2 0
0 0 1

3
5 I (5.47)

Exercise 77. Show that Z3 D Z3.

5.11.4 Spherical Coordinates

Align a background Cartesian grid with the spherical coordinates r; 	; 
 in the
natural way: the z-axis coincide with the azimuthal axis 	 D 0 and let the x-axis
coincide with the azimuthal axis 
 D 0. The position vector R is given by

R .r; 	; 
/ D r sin 	 cos
 i C r sin 	 sin
 j C r cos 	 k: (5.48)

The covariant basis is obtained by partial differentiation with respect to r , 	 , and 
:

Z1 D sin 	 cos
 i C sin 	 sin
 j C cos 	 k (5.49)

Z2 D r cos 	 cos
 i C r cos 	 sin
 j � r sin 	 k (5.50)

Z3 D �r sin 	 sin
 i C r sin 	 cos
 j: (5.51)

The covariant basis is illustrated in Fig. 5.5.
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The metric tensors are given by

Zij D
2
4 1 r2

r2 sin2 	

3
5 I Zij D

2
41 r�2

r�2 sin�2 	

3
5 : (5.52)

The contravariant basis Zi is

Z1 D sin 	 cos
 i C sin 	 sin
 j C cos 	 k (5.53)

Z2 D r�1 cos 	 cos
 i C r�1 cos 	 sin
 j � r�1 sin 	 k (5.54)

Z3 D �r�1 sin�1 	 sin
 i C r�1 sin�1 	 cos
 j: (5.55)

5.12 The Christoffel Symbol �k
ij

In affine coordinates, the covariant basis Zi is the same at all points. In curvilinear
coordinate systems, the basis varies from one point to another. The variation
can be described by the partial derivatives @Zi =@Zj . The expression @Zi =@Zj

represents N2 vectors: each of the basis elements differentiated with respect to
each of the coordinates. Each of the N2 vectors @Zi =@Zj can be decomposed with
respect to the covariant basis Zk . The resulting N3 coefficients form the Christoffel
symbol �kij :

@Zi
@Zj

D �kijZk: (5.56)

This equation represents N2 vector identities that define N3 scalar entries of �kij .
The Christoffel symbol first appeared in Elwin Bruno Christoffel’s master-

piece [7]. This work was a precursor to Gregorio Ricci and Tullio Levi-Civita’s
paper [34] that announced tensor calculus. The Christoffel symbol plays an extraor-
dinarily important behind-the-scenes role. Its value becomes apparent in Chap. 8 in
which the covariant derivative is introduced.

The object @Zi =@Zj is the second derivative of the position vector R

@Zi
@Zj

D @2R
@Zj @Zi

: (5.57)

Therefore,

@Zi
@Zj

D @Zj
@Zi

; (5.58)
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Fig. 5.6 Elwin Bruno
Christoffel (1829–1900),
German physicist and
mathematician, was a central
figure in the origins of tensor
calculus

which implies that the Christoffel symbol is symmetric in the lower indices:

�kij D �kji : (5.59)

The explicit expression for the Christoffel symbol is

�kij D Zk � @Zi
@Zj

: (5.60)

The equation follows immediately from the discussion in Sect. 5.10. Start with
equation (5.56) and dot both sides with Zl :

Zl � @Zi
@Zj

D �kijZk � Zl : (5.61)

By equation (5.16), Zk � Zl D ılk , therefore

Zl � @Zi
@Zj

D �kij ı
l
k D �lij : (5.62)

Renaming the index l into k yields equation (5.60).
In Euclidean spaces, equations (5.56) and (5.60) are equivalent. In Chap. 10,

where we discuss differentiation on curved surfaces, we discover that equation (5.60)
is a more universal approach to defining the Christoffel symbol than equation (5.56).

The Christoffel symbol also appears in the decomposition of the partial
derivatives @Zi =@Zj of the contravariant basis Zi . Transform equation (5.60)
by the product rule

�kij D @
�
Zk � Zi

	
@Zj

� @Zk

@Zj
� Zi : (5.63)
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The product Zk � Zi is the Kronecker symbol ıkj . Since ıkj has constant elements, its
partial derivatives vanish. This yields a new expression for the Christoffel symbol

�kij D � @Zk

@Zj
� Zi ; (5.64)

from which it can be seen that @Zk=@Zj is given by

@Zk

@Zj
D ��kijZi : (5.65)

Note the similarities and the differences between equations (5.56) and (5.65). In
both cases, the Christoffel symbol is the key to expressing the partial derivatives
of the basis elements. On the other hand, the equations differ in sign—this sign
difference between covariant and contravariant objects permeates all of tensor cal-
culus. The second important difference is the roles of the indices. In equation (5.56),
the two lower indices (i and j ) are free and the upper index participates in the
contraction. In equation (5.65), the upper and lower indices (k and j ) are free and
the other lower index is contracted.

We now mention the remarkable property that the Christoffel symbol is intrinsic.
The expression for �kij in terms of the metric tensor reads

�kij D 1

2
Zkm

�
@Zmi

@Zj
C @Zmj

@Zi
� @Zij

@Zm

�
: (5.66)

In our approach, the Christoffel symbol was defined extrinsically in terms of
the bases Zi and Zi . Therefore, the fact that it is actually an intrinsic object is
surprising. In Riemannian geometry, where the starting point is the metric tensor,
equation (5.66) serves as the definition of the Christoffel symbol. The derivation of
equation (5.66) is given in the following exercises.

Exercise 78. Show that

@Zij

@Zk
D Zli�

l
jk CZlj�

l
ik: (5.67)

The combination Zli�ljk can be denoted by �i;jk . This is an example of index
juggling introduced in the next chapter. Some texts refer to �i;jk as the Christoffel
symbol of the first kind and �ijk as the Christoffel symbol of the second kind. In

terms of the Christoffel symbol of the first kind, the expression for @Zij =@Zk reads

@Zij

@Zk
D �i;jk C �j;ik: (5.68)
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Exercise 79. By renaming indices, obtain an expression for each of the terms in
parentheses of equation (5.66).

Exercise 80. Combine all expressions in the preceding exercise to derive
equation (5.66).

Exercise 81. Consider a material particle moving along a curve with parametriza-
tion with respect to time given by

Zi � Zi .t/ : (5.69)

Suppose that the velocity of the material particle is given by V .t/. Show that the
component V i .t/ of V .t/ is given by

V i .t/ D dZi .t/

dt
: (5.70)

Hint: V .t/ D R0 .t/.

Exercise 82. Show that the component Ai .t/ of acceleration A .t/ of the particle
from the preceding exercise is given by

Ai D dV i

dt
C �ijkV

j V k: (5.71)

Exercise 83. Let B .t/ D A0 .t/ be the rate of change in acceleration A .t/. Show
that Bi .t/ is given by

Bi D dAi

dt
C �ijkA

j V k: (5.72)

Exercise 84. For a general vector field U .t/ defined along the curve Zi � Zi .t/,
show that

U0 .t/ D
�
dU i

dt
C V j�ijkU

k

�
Zi : (5.73)

Therefore, if U .t/ is constant along the curve, we have

dU i

dt
C V j�ijkU

k D 0: (5.74)
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5.13 The Order of Indices

With the introduction of the Christoffel symbol, we have started using the tensor
notation in earnest. We must appreciate the ease with which complex operations are
expressed in tensor notation. Consider the now familiar change of identities

�kij D Zk � @Zi
@Zj

D @
�
Zk � Zi

	
@Zj

� @Zk

@Zj
� Zi D � @Zk

@Zj
� Zi : (5.75)

In three dimensions, this equation represents 27 simultaneous calculations. Yet, the
calculation flows as easily as if it were a single calculation.

The Christoffel symbol has three indices, the largest number of indices we have
encountered so far. The second Bianchi identity (12.15) in Chap. 12 includes an ob-
ject with five free indices. It is impractical to treat these objects as multidimensional
matrices with a specialized operation of multiplication. In tensor calculus, it is best
to think of variants, regardless of dimension, as an indexed collection of values. In
other words, a variant is an object that yields a value for every valid combination of
indices.

The order of indices is important. For example, what is the value of the
Christoffel symbol in spherical coordinates at the point r D 1, 	 D �=2, 
 D 0 for
the index values 1; 3; 2? This question is unclear because it is not indicated which
index is meant to have which value. It is often impractical to refer to indices by name
since indices can be renamed. A better way to eliminate the ambiguity is to agree
on the order of the indices. For the Christoffel symbol �kij , there are two competing
conventions regarding the order of the indices. According to the convention adopted
here, the upper index is first and the two lower indices are second and third.

For variants with indices that are all lower or all upper, the order is self-evident.
Such variants include the metric tensors Zij and Zij . For some variants, where the
index placements are mixed, the order does not matter. For example, the Kronecker
symbol ıij is zero for index values 1 and 2 regardless of which index has value 1
and which has value 2. For all other variants the order is important and must be
maintained either by convention, as in the case of the Christoffel symbol, or by
a special notational device such as the dot place keeper. For example, in order to
indicate that the upper index is first for a variant Aij we can write it as Ai�j . If we
want the upper index to be second, we write it as A�i

j . The dot approach is discussed
further in Chap. 6 in the context of index juggling.
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5.14 The Christoffel Symbol in Various Coordinates

5.14.1 Cartesian and Affine Coordinates

In affine coordinates, and Cartesian in particular, the Christoffel symbol vanishes at
all points

�ijk D 0: (5.76)

This is a differential way of saying that the covariant basis, and therefore the metric
tensors, are unchanged from one point to another.

5.14.2 Cylindrical Coordinates

The nonzero Christoffel elements are given by

�122 D �r (5.77)

�212 D �221 D 1

r
: (5.78)

5.14.3 Spherical Coordinates

Letting R D 1, ‚ D 2, and ˆ D 3, the nonzero Christoffel symbol entries are
given by

�R‚‚ D �r (5.79)

�Rˆˆ D �r sin2 	 (5.80)

�‚R‚ D �‚‚R D 1

r
(5.81)

�‚ˆˆ D � sin 	 cos 	 (5.82)

�ˆRˆ D �ˆˆR D 1

r
(5.83)

�‚‚ˆ D �‚ˆ‚ D cot 	: (5.84)

Exercise 85. Derive the Christoffel symbols in cylindrical and spherical coordi-
nates by equation (5.60).
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Exercise 86. Derive the Christoffel symbols in cylindrical and spherical coordi-
nates by equation (5.66).

5.15 Summary

In this chapter, we introduced the most important differential elements in the
Euclidean space: the position vector R, the covariant and contravariant bases Zi
and Zi , the covariant and contravariant metric tensors Zij and Zij , and the volume
element

p
Z. These objects are collectively known as the metrics. There are two

more objects that are considered metrics: the volume element
p
Z and the Levi-

Civita symbols "ijk are discussed. Both are introduced in Chap. 9. The volume
element plays a particularly crucial role in the subject of integrals (Chap. 14).

In the next chapter we study how variants transform under a change of coor-
dinates. We learn that the metrics and a number of other objects are tensors (that
is objects that transform according to a special rule) and discuss the important
implications of the tensor property.



Chapter 6
The Tensor Property

6.1 Preview

In this chapter we get down to the business of tensors. We introduce the concept
of a variant and define tensors as variants that transform from one coordinate
system to another by a very special rule. We define covariance and contravariance
and demonstrate how these opposite modes of transformation under a change of
coordinates lead to the main goal of tensor calculus: invariance.

6.2 Variants

A variant is an object that can be constructed by a similar rule in various coordinate
systems. In the preceding chapter, we encountered a number of variants. For
example, the covariant basis Zi is a variant because it is obtained in any coordinate
system by the same rule—partial differentiation of the position vector R. The metric
tensor Zij is also a variant because it is formed by pairwise dot products of the
elements of the covariant basis. Similarly, every object introduced in the preceding
chapter is a variant, including the Christoffel symbol �kij .

The Jacobian J i
0

i is not a variant. It expresses a relationship between two
coordinate systems and therefore cannot be constructed given one coordinate
system. Similarly, second-order derivatives J i

0

ij are not variants. If one of the

coordinate systems is fixed and the other one is allowed to change, then J i
0

i and
J i

0

ij can be considered variants with respect to the changing coordinate system.
Naturally, when the same rule is applied in different coordinate systems, the

results differ. This is the motivation behind calling these objects variants. Among
variants, there stands out a very special class of objects that transform according to a
special rule. These objects are called tensors, and we now turn to the study of these
crucially important objects. We note in advance that all metrics Zi , Zi , Zij and Zij

are tensors.

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 6, © Springer Science+Business Media New York 2013

75



76 6 The Tensor Property

6.3 Definitions and Essential Ideas

6.3.1 Tensors of Order One

A variant Ti is called a covariant tensor if its values Ti and Ti 0 in the coordinate
systems Zi and Zi 0 are related by

Ti 0 D TiJ
i
i 0 ; (6.1)

where J i
i 0

is the Jacobian defined in equation (4.70). A variant T i is called a
contravariant tensor if T i and T i

0

are related by the Jacobian J i
0

i defined in (4.71)

T i
0 D T iJ i

0

i : (6.2)

The term covariant means transforms in the same way as the basis Zi and the term
contravariant means transforms in the opposite way. Recall that the Jacobians J i

i 0

and J i
0

i are the matrix inverses of each other. Covariant tensors are denoted by
lower indices and contravariant tensors are denoted by upper indices. In addition to
numerous other advantages, the placement of the index makes it easy to remember
whether J i

0

i or J i
i 0

is to be used.
The fundamental importance of the tensor property is rooted in the fact that

J i
i 0

and J i
0

i are the matrix inverses of each other. This relationship is expressed
in equations (4.74) and (4.76). Let us repeat these identities here since we will make
frequent use of them in this chapter:

J ii 0J
i 0

j D ıij (4.74)

J i
0

i J
i
j 0 D ıi

0

j 0 : (4.76)

6.3.2 Tensors Are the Key to Invariance

To appreciate the importance of the tensor property, let us prove a special case of the
contraction theorem. It is the fundamental theorem of tensor calculus and it gives
us a recipe for producing geometrically meaningful invariants. Suppose that Si is a
covariant tensor and T i is a contravariant tensor. Then the contraction

U D SiT
i (6.3)

is invariant. That is, U evaluates to the same value in all coordinate systems!
To demonstrate this property, consider the quantity U 0 evaluated in the primed

coordinates according to the same contraction as U in the unprimed coordinates:

U 0 D Si 0T
i 0 : (6.4)

Polcz Péter
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Relate the values Si 0 and T i
0

to their values Si and T i in the unprimed coordinates:

U 0 D SiJ
i
i 0T

kJ i
0

k : (6.5)

We introduced a new index k in expressing T i
0

since i was used for Si 0 . Note, that
because of the relationship (4.74) between the Jacobians J i

i 0
and J i

0

k , U 0 is given by

U 0 D SiT
kıik; (6.6)

or, since T kıik D T i , we find

U 0 D SiT
i : (6.7)

In other words,

U 0 D U (6.8)

and we have shown that the variant U evaluates to the same value in all coordinate
systems. The keys to the invariance are the tensor property of Si and T i and the
inverse relationship between the Jacobians.

6.3.3 The Tensor Property of Zi

We now show that the covariant basis Zi is indeed a covariant tensor and so the term
covariant is justified. The demonstration of the tensor property usually proceeds as
follows. We start with the definition of the variant in the primed coordinate system
and then relate its values in the primed coordinates to its values in the unprimed
coordinates. If the relationship is of type (6.1) or (6.2) then the variant is a tensor of
the corresponding kind.

Let us first look at the one-line proof of the tensor property Zi and then discuss
each step:

Zi 0 D @R .Z0/
@Zi 0

D @R .Z .Z0//
@Zi 0

D @R
@Zi

@Zi

@Zi 0
D Zi J ii 0 : (6.9)

Now, one step at a time. The covariant basis Zi 0 in the primed coordinate system is
given by the partial derivative of the position vector R with respect to the primed
coordinate Zi 0 :

Zi 0 D @R .Z0/
@Zi 0

: (6.10)

Polcz Péter
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The function R .Z0/ gives the position vector R as a function of the coordinates
Zi 0 . The following is the critical step from which the ultimate relationship is
derived. The function R .Z0/ can also be constructed by substituting Zi .Z0/—the
expression for the unprimed coordinates in terms of the primed coordinates—into
R .Z/, that is the function that gives the position vector R as a function of the
unprimed coordinates Zi :

R
�
Z0	 D R

�
Z
�
Z0		 : (6.11)

The next step is differentiation by the chain rule, the tensor form of which you
mastered in Chap. 4:

@R .Z .Z0//
@Zi 0

D @R
@Zi

@Zi

@Zi 0
: (6.12)

Finally, we recognize that @R=@Zi is Zi and @Zi=@Zi 0 is J i
i 0

. Summarizing

Zi 0 D Zi J ii 0 ; (6.13)

which shows that Zi is indeed a covariant tensor.

6.3.4 The Reverse Tensor Relationship

Suppose that Ti is a covariant tensor, that is, Ti 0 D TiJ
i
i 0

. What is Ti in terms of Ti 0?
For a moment, consider this question in the language of linear algebra: if T 0 D JT ,
then what is T in terms of T 0? It is obtained by left-multiplying both sides of the
identity by J�1, yielding T D J�1T 0. In tensor algebra terms, the same effect is
achieved by multiplying both sides of the identity Ti 0 D TiJ

i
i 0

by J i
0

j :

Ti 0J
i 0

j D TiJ
i
i 0J

i 0

j : (6.14)

Since J i
i 0
J i

0

j D ıij by equation (4.74), we have

Ti 0J
i 0

j D Tiı
i
j D Tj : (6.15)

Finally, renaming the index j to i , we find

Ti D Ti 0J
i 0

i : (6.16)

Similarly, if T i is the contravariant tensor, then the reverse of T i
0 D T iJ i

0

i reads

T i D T i
0

J ii 0 : (6.17)
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Equations (6.16), (6.17), in conjunction with (6.1), (6.2), offer greater flexibility
in demonstrating the tensor property. On some occasions, it is easier to start with
the unprimed components Ti or T i and relate them to the primed components
Ti 0 and T i

0

. On other occasions, its more natural to go the other way. Equa-
tions (6.1), (6.2), (6.16) and (6.17) help move effortlessly in either direction.

There is a noteworthy elegance in equations (6.1), (6.2), (6.16), (6.17) which is
found in all tensor relationships: the placement of the indices leads to the proper
choice of objects. For example, you may not find it easy to remember whether
T i

0

and T i are related by J i
i 0

or its inverse J i
0

i . The matching of indices naturally
suggests the correct equations (6.2) and (6.17). This property of the tensor notation
is one of its greatest assets.

6.3.5 Tensor Property of Vector Components

We next show that components V i of a vector V with respect to the covariant basis
Zi form a contravariant tensor. As always, begin by writing the definition of V i 0 in
the primed coordinates:

V D V i 0Zi 0 : (6.18)

By the tensor property of Zi , we have

V D V i 0J ii 0Zi : (6.19)

In the unprimed coordinates, the vector V is given by

V D V iZi : (6.20)

Since decomposition with respect to a basis is unique, the last two equations yield
the following relationship between V i and V i 0 :

V i D V i 0J ii 0 : (6.21)

This proves the contravariant property of vector components V i .
We have previously shown that if Si and T i are a covariant tensor and a

contravariant tensor, then the contraction SiT i is an invariant. In the foregoing
proof, we have essentially demonstrated a converse: If SiT i is invariant and one
of the terms in the product is a tensor, then the other term is also a tensor. This is a
special case of a more general quotient theorem.
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6.3.6 The Tensor Property of Z i

The tensor property of the contravariant basis Zi can be proved by similar reasoning.
Recall the following relationship between the covariant and contravariant bases:

Zi � Zj D ıij : (5.16)

Multiply both sides by J i
0

i J
j

j 0

Zi J i
0

i � Zj J
j

j 0 D ıij J
i 0

i J
j

j 0 (6.22)

As we stressed in Chap. 4, the order of the multiplicative terms is immaterial.
Furthermore, the placement of the dot � in the dot product is arbitrary, and the result
is not affected by the order of operations.

By the tensor property of Zj , the contraction Zj J
j

j 0 is Zj 0 . Furthermore ıij J
i 0

i J
j

j 0

is ıi
0

j 0 (why?), yielding:

Zi J i
0

i � Zj 0 D ıi
0

j 0 : (6.23)

This identity tells us that the set of three vectors Zi J i
0

i is mutually orthogonal to
Zj 0 . Therefore, on linear algebra grounds, the vector Zi J i

0

i must be Zi
0

:

Zi
0 D Zi J i

0

i : (6.24)

This proves the contravariant property of Zi .

6.4 Tensors of Higher Order

The definition of tensor generalizes to an arbitrary number of indices. For example,
a variant Tij is a doubly covariant tensor if its primed values Ti 0j 0 relate to the
unprimed Tij by the identity

Ti 0j 0 D Tij J
i
i 0J

j

j 0 : (6.25)

Similarly, T ij is a doubly contravariant tensor if T i
0j 0

and T ij are related by

T i
0j 0 D T ij J i

0

i J
j 0

j : (6.26)

Finally, T ij is tensor of one contravariant order and one covariant order if

T i
0

j 0 D T ij J
i 0

i J
j

j 0 : (6.27)
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When stating that a particular variant is a tensor, one need not mention the flavor
(covariant or contravariant) of the index since it is indicated by the placement of the
index. Therefore, Tij , T ij , and T ij are all described simply as second-order tensors.

The tensor definition is easily extended to tensors of any order by operating on
each index with the proper Jacobian. For instance Rijkl is a fourth-order tensor if

Ri 0j 0k0l 0 D RijklJ
i
i 0J

j

j 0J
k
k0J

l
l 0 : (6.28)

6.4.1 The Tensor Property of Zij and Z ij

We now show that Zij and Zij are tensors. For the covariant metric tensor Zij ,
its components in the primed coordinates are, by definition, the dot product of the
primed covariant basis vectors:

Zi 0j 0 D Zi 0 � Zj 0 : (6.29)

Utilizing the covariant property of the covariant basis, we have

Zi 0j 0 D Zi J ii 0 � Zj J
j

j 0 : (6.30)

Recognizing that Zi � Zj D Zij we arrive at the identity

Zi 0j 0 D Zij J
i
i 0J

j

j 0 ; (6.31)

which proves the tensor property of Zij .
The tensor property ofZij can be established in two ways. Since we have already

established the tensor property of Zi , the tensor property of Zij follows easily by
analogy with Zij :

Zi 0j 0 D Zi
0 � Zj

0 D Zi J i
0

i � Zj J j
0

j D Zij J i
0

i J
j 0

j : (6.32)

On the other hand, the tensor property of Zij can be established by a quotient
argument similar to the argument that showed the tensor property of Zi .

Exercise 87. Prove the tensor property of Zij from the identity ZijZjk D ıik

6.4.2 The Tensor Property of ıi
j

The Kronecker symbol ıij may seem like an invariant: it has the same values in all
coordinates. However, the concept of invariant only applies to variants of order zero.
The Kronecker symbol as a variant of order two. But is it a tensor? The answer is
yes. Below, we prove that a product (or a dot product) of two tensors is a tensor.
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This implies that ıij is a tensor because it is the dot product of two tensors: ıij D
Zi �Zj . On the other hand, we can show the tensor property of the Kronecker symbol
directly. Multiply ıij by the combination J i

0

i J
j

j 0 . The result is ıi
0

j 0

ıij J
i 0

i J
j

j 0 D J i
0

j J
j

j 0 D ıi
0

j 0 ; (6.33)

which shows that the values of the Kronecker symbol in different coordinate systems
relate by the tensor rule. Therefore, the Kronecker symbol is a tensor.

6.5 Exercises

Exercise 88. Show that, for a scalar field F , the collection of partial derivatives
@F=@Zi is a covariant tensor.

Exercise 89. Given a scalar field F , show that the collection of second-order partial
derivatives @2F=@Zi@Zj is not a tensor. More generally, generally show that, for a
covariant tensor field Ti , the variant @Ti=@Zj is not a tensor.

Exercise 90. Show that the skew-symmetric part Sij

Sij D @Ti

@Zj
� @Tj

@Zi
(6.34)

of the variant @Ti=@Zj is a tensor.

Exercise 91. Similarly, for a contravariant tensor T i , derive the transformation rule
for @T i=@Zj , and show that it is not a tensor.

Exercise 92. Derive the transformation rule for the Christoffel symbol �kij on the
basis of equation (5.60) and show that is not a tensor.

Exercise 93. For a tensor Tij , derive the transformation rule for @Tij =@Zk and show
that it is not a tensor. Apply the obtained relationship to the metric tensor Zij and
use the result to obtain the transformation rule for the Christoffel symbol �kij on the
basis of equation (5.66).

Exercise 94. Show that if a tensor vanishes in one coordinate system, then it
vanishes in all coordinate systems.

The tensor property may sometimes be considered with respect to a subclass of
transformations. That is, a variant may not be a tensor in the general sense, but still a
tensor with respect to a narrower class of coordinate transformations, such as linear
transformations characterized by Jacobians with positive determinants.

Polcz Péter
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Exercise 95. Which of the objects considered in the preceding exercises are tensors
with respect to linear transformations

Zi 0 D Ai
0

i Z
i C bi

0

; (6.35)

without being tensors in the general sense?

6.6 The Fundamental Properties of Tensors

6.6.1 Sum of Tensors

The sum of two tensors is a tensor. It is implied that the two tensors being added
have identical index signatures and the result is a tensor with the same signature.
We prove this property by considering a representative indicial signature. Let Aijk
be the sum of Bi

jk and C i
jk :

Aijk D Bi
jk C C i

jk: (6.36)

Then

Ai
0

j 0k0 D Bi 0

j 0k0 C C i 0

j 0k0 D Bi
jkJ

i 0

i J
j

j 0J
k
k0 C C i

jkJ
i 0

i J
j

j 0J
k
k0 D AijkJ

i 0

i J
j

j 0J
k
k0 : (6.37)

Summarizing,

Ai
0

j 0k0 D AijkJ
i 0

i J
j

j 0J
k
k0 ; (6.38)

which proves that Aijk is a tensor.

Exercise 96. Show that a linear combination of tensors is a tensor.

6.6.2 Product of Tensors

Any two variants can be multiplied together to form a new variant. The result is
called the tensor product and it has as many indices as the multiplicative terms
combined. For example,

Aijkl D Bi
jCkl : (6.39)
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The tensor product of tensors is a tensor. The proof for representative indicial
signatures is completely straightforward:

Ai
0

j 0k0l 0 D Bi 0

j 0Ck0l 0 D Bi
jCklJ

i 0

i J
j

j 0J
k
k0J

l
l 0 D AijklJ

i 0

i J
j

j 0J
k
k0J

l
l 0 : (6.40)

Similarly, the dot product of two vector-valued tensors is a tensor, and the product
of a scalar-valued tensor with a vector-valued tensor is a tensor.

6.6.3 The Contraction Theorem

We have already discussed a special case of the contraction theorem and learned
that it is the key to forming invariants. Here we give a general form of the theorem
and discuss its important implications. The theorem states: contraction of a tensor
is a tensor. Of course, a contraction is only valid when it is over one covariant and
one contravariant index.

The proof once again proceeds by example. The key to the proof is, of course, the
inverse relationships between the Jacobians. Suppose that Sijk is a tensor of order

three. We will show that Tk D Siik is a tensor. We first express the fact that Sijk is a
tensor

Si
0

j 0k0 D SijkJ
i 0

i J
j

j 0J
k
k0 : (6.41)

Contracting both sides on i 0 and j 0 yields

Si
0

i 0k0 D SijkJ
i 0

i J
j

i 0
J kk0 : (6.42)

Since J i
0

i J
j

i 0
D ı

j
i , we find

Si
0

i 0k0 D Sijkı
j
i J

k
k0 ; (6.43)

or

Si
0

i 0k0 D SiikJ
k
k0 : (6.44)

In other words,

Tk0 D TkJ
k
k0 (6.45)

and the desired relationship is obtained. This demonstration for a particular index
signature should convince you that the theorem holds for arbitrary tensors.



6.7 Exercises 85

6.6.4 The Important Implications of the Contraction Theorem

We have shown that a variant built up from tensors is a tensor. Building up
an expression includes forming linear combinations, products and contractions.
Importantly, in this scheme, invariants can be treated as tensors of order zero. For
example, if U is an invariant, then by definition

U 0 D U; (6.46)

which is consistent with the definition of a tensor with zero indices.
Therefore, by the contraction theorem, when all indices are contracted away, the

result is an invariant. For example, if Sij is a tensor, then Sii is an invariant. If Sijkl is

a tensor, then Sijij is an invariant and Sijj i is an invariant as well, but a different one.

If Si is a tensor and T ijk is a tensor, then SiT
ij
j is an invariant by combinations of

the product and contraction theorems. If Sij is a tensor, then
�
ıki ı

l
j � ıli ıkj

�
SikS

j

l is

an invariant by combination of the sum, product, and contraction theorems.
And so, we developed a strategy for forming invariants: stick tensors and tensor

operations—linear combinations, products, and contractions. This is the central
idea of tensor calculus and an important moment in this book. Earlier we argued
that while coordinate systems are an irreplaceable tool for solving problem, they
often lead to loss of geometric insight and unmanageable calculations. We have just
found a remedy to many of the coordinate ills! The tensor framework provides an
approach in which calculations can take full advantage of coordinate systems while
maintaining the geometric insight.

A tensor is a beautiful object. It is not an invariant and, in a particular coordinate
system, it exhibits some features that reflect its geometric origins and some
features that are strictly artifacts of the coordinate system. Nevertheless, the
artifacts of the coordinate system are present in a systematic tensor fashion and
are removed by contraction, leaving us with a geometric object. This is what makes
tensors meaningful.

Many a poetic analogy can be made for tensors. One is that of a photographic
negative. A negative is not a photograph but it has all the information that is needed
to make one. The equipment and the materials required to make a photograph
represent the contraction in the analogy. Importantly, while a negative is not a
photograph, it is actually better than a photograph for a number of photograph-
making tasks. For example, a negative can be used to make a photograph of many
reasonable sizes without loss of quality. A negative is not meaningful by itself
(neither is a tensor), but in combination with proper equipment (a tensor needs
contraction) it can produce a photograph (tensors lead to invariants).

6.7 Exercises

Exercise 97. Suppose that Si and T jk are tensors. Prove that SiT ij is a tensor.
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Exercise 98. Since ıij is a tensor, ıii must be an invariant. What is the value of ıii
and what is its geometric meaning?

Exercise 99. Suppose that Vij is a tensor with vector elements. Show that V k
ij , the

components Vij with respect to the covariant basis Zi , is a tensor.

Exercise 100. Give a variant arbitrary values in some coordinate system and let
it transform by the proper tensor rules. Show that this construction produces a
tensor. More specifically, single out a particular coordinate system ZN{ and choose

an arbitrary collection of values for T N{ Nj
Nk . Then, in coordinates Zi , define T ijk by

T
ij

k D T
N{ Nj
Nk J

iN{ J
j

Nj J
NkNk : (6.47)

Show that T ijk is a tensor.

6.8 The Gradient Revisited and Fixed

We now have all the tools to address the issue of the gradient that was raised
earlier. Recall that the gradient rF of a scalar field F has a perfectly clear invariant
definition: it is a vector that points in the direction of the greatest increase of F and
its magnitude equals the directional derivative of F in that direction.

The problem arose when we attempted to find an analytical expression for the
gradient that yielded the correct result in all coordinate systems. The candidate
expression was the combination

rF D
X
i

@F

@Zi
Zi : (6.48)

Note that in this expression we must use the summation sign because both
indices are lower and the summation convention does not apply. We learned that
this expression gives the right answer only in Cartesian coordinates. The tensor
perspective offers both the explanation of why expression (6.48) fails and a fix.

Equation (6.48) has several elements, of which all but one are proper from the
tensor points of view. The collection of partial derivatives @F=@Zi is a tensor. The
covariant tensor Zi is a tensor. Their product

�
@F=@Zj

	
Zi is a tensor of order two.

However, the contraction is invalid because both tensors are covariant. The result,
therefore, is not guaranteed to be an invariant. In fact, it is virtually guaranteed
not to.

The fix dictates itself. In order to produce an invariant we must mix covariant and
contravariant tensors. The correct analytical expression for the gradient is

rF D @F

@Zi
Zi : (6.49)
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By the product and contraction theorems, this expression is an invariant.
Furthermore, in Cartesian coordinates it reduces to

rF D @F

@x
e1 C @F

@y
e2 C @F

@z
e3; (6.50)

which gives the correct vector. Since the combination in (6.49) gives the same
answer in all coordinate systems and the correct answer in Cartesian coordinates,
it must give the correct answer in all coordinates!

This way of reasoning, which resorts to special coordinate systems, is frequently
used in tensor calculus. It is often preferable and more geometrically insightful to
furnish a proof that does not require particular coordinate systems.

Exercise 101. Explain why the Laplacian �F of a scalar function F cannot be
defined as

�F D Zij @2F

@Zi@Zj
‹ (6.51)

Hint: Is @2F=@Zi@Zj a tensor?

6.9 The Directional Derivative Identity

Now that we have a solid analytical definition of the gradient, we are able to give
the proper analytical derivation of equation (2.11)

dF

dl
D rF � L: (6.52)

Suppose l is a straight line passing through the point P in the direction of the unit
vector L. Suppose that l is parametrized by its arc length s:

Zi D Zi .s/ : (6.53)

Then, along l , the function F .s/ is given by the composition

F .s/ D F .Z .s// : (6.54)

Differentiating this identity by the chain rule yields

dF

ds
D @F

@Zi

dZi

ds
: (6.55)

The three elements of this equation can be identified with the three elements in
equation (2.11). dF=ds is by definition the directional derivative dF=dl , @F=@Zi

is the gradient riF , and, finally, dZi=ds represents the unit tangent L. Therefore,
equation (2.11) is justified.
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6.10 Index Juggling

We have already encountered index juggling in Chap. 5 where we introduced the
contravariant basis Zi as ZijZj . This is an example of raising the index. In general,
the raising of the index is the contraction of a variant with the contravariant metric
tensor:

T j D TiZ
ij : (6.56)

The variant T j is closely related to the variant Ti . In fact, although the elements of
T j and Ti are different, they can be thought of as different manifestations of the
same object.

Contraction with the covariant metric tensor effects the lowering of the index.
Not surprisingly, the two operations are the inverses of each other, so no information
is lost or created by the operation. It is simply a notational convenience, but as far
as notation conveniences go, it is on par with the Einstein summation convention in
terms of effectiveness. The operations of lowering and raising indices are referred
to collectively as index juggling.

Any covariant index can be raised and any contravariant index can be lowered.
Recall that in every tensor, the order of the indices must be clearly specified. When
all the indices are either covariant, as in Tijk , or contravariant, as in T ijk , the natural
order of the indices is easy to recognize: for Tijk and T ijk , i is the first index, j is
the second, and k is the third.

When the flavors of the indices are mixed, as in T ij , the order of the indices is
more arbitrary. For example, we may agree that in T ij , the upper index is first and the
lower index is second. However, once the order is established, it must be maintained
in subsequent computations. If indices can be juggled, a notational device is need
to maintain the order of the indices. To illustrate the potential problem, consider the
situations in which the upper index of T ij is lowered and the lower is raised:

T kl D T ij ZilZ
jk: (6.57)

Then what is the entry T 12 ? Well, it is unclear whether T 12 is referring to the original
variant or the one with the indices juggled.

The solution is to allocate a slot for each index and use the dot � to spread out the
indices. The original variant can be denoted by T i�j clearly indicating that the upper
index is first and the lower is second. The upper part of the second slot occupied by
j could also be marked with a dot T i ��j , but the second dot is not necessary. If the
first index is lowered, dots are not necessary since both indices are lower:

Tkj D T i�jZik: (6.58)
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Subsequently, if the second index is raised, the dot reappears in the first slot:

T �l
k D TkjZ

jl : (6.59)

With this notation it is clear that T 1�2 refers to the original form of the variant, T12
refers to the intermediate form, while T �2

1 refers to the juggled form.
There are several types of variants for which tracking the order of indices is

handled by different means. First, are symmetric variants. If

Tij D Tji (6.60)

then

T i�j D T �i
j ; (6.61)

and it can therefore be written as T ij without confusion. Note, as discussed in the
following section, the Kronecker symbol ıij with a lowered index is Zij . Thus,
ıi�j D ı�i

j and it can be denoted by ıij with no ambiguity.
Finally, there are a number of special variants for which the order of indices

is defined by convention example, for the Christoffel symbol �ijk , introduced in
Chap. 8, we adopt the convention that the upper index is first. In practice, there does
not arise a situation where the lower indices need to be raised. On the other hand,
the first Christoffel index is commonly juggled, and the Christoffel index with the
lowered first index is written as �i;jk . Note that even the comma is unnecessary.
However, some texts use the convention where the upper index is actually last. The
comma therefore is meant to signal a casual reader of this book as to our convention.
If the situation ever arises where second and third indices are raised, the � notation
would be advisable.

Exercise 102. Consider a coordinate system where the metric tensor at point A is

Zij D
�

2 �1
�1 2

�
(6.62)

Suppose that T i�jkl is a object whose only nonzero value is

T 1�212 D �: (6.63)

Determine T1212 and T2212

Exercise 103. Show that the operations of raising and lowering indices are the
inverses of each other. That is, if

Si D SjZjk; (6.64)
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then

Si D SjZ
jk: (6.65)

Exercise 104. Show that the flavors of indices can be swapped in a contraction:

SiT
i D SiTi : (6.66)

Exercise 105. Show that in a tensor identity, a live covariant (contravariant) index
can be raised (lowered) on both sides. That is, if, for instance,

Si D T jkiUjk; (6.67)

then

Si D T
jk
��i Ujk: (6.68)

Exercise 106. Show that for symmetric tensors Tij (Tij D Tji ), we have

T i�j D T
�j
i : (6.69)

Therefore

ıi�j D ı�i
j ; (6.70)

as we are about to show.

6.11 The Equivalence of ıi
j

and Zij

Objects related by index juggling are considered equivalent. From this point of
view, the Kronecker symbol and the metric tensor are equivalent, since ıij with the
contravariant index is the covariant metric tensor:

ıijZik D Zjk: (6.71)

Therefore, the object that could be denoted by ıjk is actually Zjk . Similarly, what
is Zij with the index raised? It is the Kronecker symbol, since

ZijZ
jk D ıki : (6.72)

Finally, raising the covariant index in ıij yields the contravariant metric tensor:

ıijZ
jk D Zik: (6.73)
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Thus, Zij , ıij , and Zij represent one and the same family of tensors related by
index juggling. In fact, many texts denote Zij by ıij and Zij by ıij . Furthermore,
some texts denote the Kronecker symbol by Zi

j . Since the Kronecker delta symbol
is a form of the metric tensor, each of these choices are perfectly valid. On the
other hand, will continue to denote the Kronecker delta by ıij and covariant and
contravariant metric tensors by Zij and Zij .

6.12 The Effect of Index Juggling on the Tensor Notation

Index juggling leads to further compacting of the tensor notation. As a result of
index juggling, the metric tensor—perhaps the central object in tensor calculus—
almost never appears in tensor relationships explicitly. Instead, the contraction of the
metric tensor with other variants is reflected in the location of the index. Consider,
for instance, the dot product of two vectors U D U iZi and V D V jZj :

U � V D U iZi � V jZj D ZijU
iV j : (6.74)

With index juggling, U � V can be written as

U � V D UiV
i ; (6.75)

or

U � V D U iVi : (6.76)

Equations (6.75) and (6.76) are deceptively simple and make the dot produce
appear computationally cheaper than it really is. For example, in three dimensions,
equation (6.75) reads

U � V D U1V
1 C U2V

2 C U3V
3; (6.77)

and appears to be three multiplications and two additions—that is, as cheap as if the
basis was Cartesian. Of course, that is not the case, because a contraction with the
metric tensor is required in order to obtain the covariant coordinates Ui out of the
contravariant coordinates U i . Therefore, as we would expect, index juggling does
not lead to more efficient computational algorithms. It does, however, lead to more
attractive and compact notation that hides the non-Cartesian nature of the local basis.

6.13 Summary

This chapter introduced the paramount tensor property. The tensor property leads to
the key recipe for constructing invariant expressions: stick to tensor expressions and
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contract away all indices. We proved that some the essential objects in Euclidean
spaces are tensors. These include Zi , Zi , Zij and Zij . On the other hand, partial
derivatives of tensors result in variants that are not tensors. Therefore, while we
were able to give an invariant formulation for the gradient in equation (6.49), we
were unable to give do the same for the Laplacian since the collection of second
derivatives @2F=@Zi@Zj is not a tensor. This problem is fixed by introducing the
covariant derivative—a new operator that produces tensors out of tensors. It is the
subject of Chap. 8.



Chapter 7
Elements of Linear Algebra in Tensor Notation

7.1 Preview

Linear algebra and tensor algebra are inextricably linked. The mechanics of these
subjects are similar: linear combinations dominate calculations and change of coor-
dinates (referred to as change of basis in linear algebra) is of primary interest. Some
ideas are best expressed with matrix notation while others are best expressed with
tensors. Matrix notation is more effective at expressing the overall algebraic struc-
ture of a calculation. Tensor notation is a better choice when it is necessary to refer
to the individual entries of an indexed set of values. For example, the inverse rule

.AB/�1 D B�1A�1; (7.1)

is best expressed with matrices. Meanwhile, the minimization of a quadratic form

1

2
xT Ax � xT b (7.2)

should be analyzed in the tensor notation.
This chapter is devoted to exploring the correspondence between these notational

systems as well as highlighting the several unique insights that the tensor notation
brings to the fundamental topics in linear algebra.

7.2 The Correspondence Between Contraction
and Matrix Multiplication

The values of a variant in a given coordinate system form an indexed set of
numbers. How one chooses to organize these numbers into a table is a matter
of convention. For first- and second-order systems, we adopt a convention that is

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 7, © Springer Science+Business Media New York 2013

93



94 7 Elements of Linear Algebra in Tensor Notation

consistent with that of linear algebra. A variant of order one, T i or Ti , is represented
by a column. The flavor of the index (covariant or contravariant) has no bearing on
the representation. A variant of order two, Tij , T ij , or T ij , is represented by a matrix
in which the first index indicates the row and the second index indicates the column.
Thus, it is important to clearly identify the order of the indices in a variant.

For a variant of order higher than two, there is no single commonly accepted
convention. For variants of order three, one may imagine a three-dimensional cube
of numbers where the first index indicates the slice and the other two indices indicate
the row and the column within the slice. Another approach, employed by several
software packages, works for any order. The idea is to organize the values as tables
within tables. For example, the system Tijk D i 2jk of order 3 can be represented as

2
664

�
1

2

� �
2

4

�
�
4

8

� �
8

16

�
3
775 : (7.3)

In this 2 � 2 matrix of columns, the first two indices determine the row and the
column, and the final index determines the position within the innermost column.
Similarly, the fourth-order system Tijkl D i 2jkl can be represented by the table

2
664

�
1 2

2 4

� �
2 4

4 8

�
�
4 8

8 16

� �
8 16

16 32

�
3
775 : (7.4)

The first two indices determine the row and the column of the overall table,
and the remaining two indices determine the row and the column within the
innermost matrix.

The matrix notation works best for two-dimensional systems. A matrix is usually
denoted by a single letter. The product AB of two matrices A and B implies a
specific contraction of the entries of A and B , as well as a specific way of arranging
the result. Consider the product

C D AB: (7.5)

In indicial notation, this product reads

Cij D
X
k

AikBkj : (7.6)

In words, the second index of A is contracted with the first index of B . The result
of this contraction for fixed i and j is placed in the i th row and j th column of the
resulting matrix.
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Second-order systems can be contracted in other ways, too:

Cij D
X
k

AikBjk (7.7)

Cij D
X
k

AkjBik (7.8)

Cji D
X
k

AikBkj : (7.9)

In order to capture these operations, the matrix notation offers two devices: the
order of multiplicative terms and the operation transpose. The above identities are
expressed in the matrix notation as follows:

C D ABT (7.10)

C D BA (7.11)

CT D AB: (7.12)

Finally, the matrix notation requires the operation of the trace in order to capture
contractions within a single square matrix. The trace is defined as the sum of the
diagonal entries:

TrA D
X
k

Akk: (7.13)

In contrast with the matrix notation, the tensor notation can be used for systems of
arbitrary order and includes only two operations: the tensor product and contraction.
The order of the terms is immaterial and the explicit operation of transposition is
absent.

The matrix notation is more effective in situations in which the overall algebraic
structure is important and when it is best to view matrices as indivisible units.
Consider, for example, the proof of the fact that for two invertible matrices A and
B , the matrix products AB and BA have identical eigenvalues. Suppose that � and
x are an eigenvalue and a corresponding eigenvector of AB:

ABx D �x: (7.14)

Multiply both sides on the left by the matrix B

BABx D �Bx (7.15)

and denote Bx by y:

BAy D �y: (7.16)
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Therefore, � is an eigenvalue of BA and the nonzero vector Bx is a corresponding
eigenvector.

The matrix notation is perfect for this kind of reasoning and truly brings out the
essence of the argument. While it is possible to present the same argument in tensor
notation, the simplicity of the argument would be obscured by the manipulation of
the indices. In short, the matrix notation is preferred in situations where the focus is
on the algebra.

Example 107. Express the symmetric property

AT D A

in the tensor notation.

Example 108. Express the product C D ATB in the tensor notation.

Example 109. Express the product CT D ATB in the tensor notation.

Example 110. Express the product CT D ATBT in the tensor notation and explain
why it follows that .AB/T D BTAT . This is an example of a theorem in matrix
algebra that is best proved in the tensor notation.

Example 111. Use the matrix notation to prove that, for invertible matrices A, B ,
and C ,

.ABC/�1 D C�1B�1A1: (7.17)

7.3 The Fundamental Elements of Linear Algebra
in Tensor Notation

Suppose that a basis fe1; : : : ; eng is chosen in the n-dimensional linear space. Denote
the elements of the basis collectively by ei . A vector v has a unique decomposition
vi with respect to the basis ei :

v D viei : (7.18)

The values vi are called the components of the vector v with respect to the basis ei .
We use a superscript in vi and employ the Einstein summation convention.

How do the components vi transform under a change of basis? In essence, we
already answered this question in Chap. 6 where we concluded that the components
of a vector with respect to a covariant basis form a contravariant tensor. Our current
goal is to translate those ideas into the matrix notation.

Consider a new basis ei 0 and suppose that the two bases are related by the
identities
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ei 0 D J ii 0ei (7.19)

ei D J i
0

i ei 0 : (7.20)

In the Jacobians J i
i 0

and J i
0

i , assume that the superscript is the first and the subscript
is the second. Furthermore, denote the Jacobian J i

i 0
by the matrix X . Then, since

J i
i 0
J i

0

j D ıij , the Jacobian J i
0

i corresponds to X�1. Note that in equation (7.19), the
contraction takes place on the first index of X . Therefore, in the matrix notation, the
basis ei 0 is given in terms of ei not by the matrix X but by the transpose XT :

E0 D XTE; (7.21)

where E and E0 are the basis vectors formally organized into a column:

E D
2
4 e1

� � �
en

3
5 I E0 D

2
4 e10

� � �
en0

3
5 (7.22)

From Chap. 6, we know that the components vi
0

and vi are related by the
identities

vi
0 D J i

0

i vi (7.23)

vi D J ii 0v
i 0 : (7.24)

Translating these relationships to the matrix notation, we find that the components
v0 (v0 is vi

0

organized into a column) are given in terms of v (v is vi organized into
a column) by multiplication with X�1. Conversely, the components v are given in
terms of v0 by multiplication with X :

v0 D X�1v (7.25)

v D Xv0: (7.26)

This is a vivid illustration of the term contravariant: the components transform in a
way opposite of the bases.

In summary, tensor calculus expressions provide excellent mnemonic rules for
establishing correct matrix rules for transformations under a change of basis. The
foregoing discussion was not a derivation of equations (7.25) and (7.26)—the
derivation took place in Chap. 6—but rather a translation of the easy to remember
equations (7.23) and (7.24) into matrix form.

Equations (7.25) and (7.26) can also be derived directly in the matrix notation.
Rewrite equation (7.18) in the matrix notation:

v D vTE: (7.27)
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In the equation above, insert, between vT and E, the identity matrix in the form�
XT

	�1
XT :

v D vT
�
XT

	�1
XTE (7.28)

and group the elements on the right-hand side as follows

v D �
X�1v

	T �
XTE

	
: (7.29)

Since XTE is E0, the combination X�1v must be v0, which is equation (7.25).
A linear space equipped with an inner product .u; v/ is called a Euclidean space.

This is different from the sense in which we use the term Euclidean space in the rest
of this book. The inner product can be evaluated in terms of components

.u; v/ D �
uiei ; vj ej

	 D �
ei ; ej

	
uivj : (7.30)

The matrix M with entries

Mij D �
ei ; ej

	
(7.31)

is called the Gram matrix. We may refer to Mij as the Gram tensor, but of course it
is nothing more than the metric tensor Zij . It can even be used to juggle indices, as
we do later in this chapter. In terms of the Gram tensor, the inner product reads

.u; v/ D Mij uivi : (7.32)

In the matrix notation

.u; v/ D uTM v:

For an orthonormal basis ei , the Gram matrix is the identity.
Once again, tensor calculus offers a simple way to remember the formula for the

transformation of the Gram matrix under a change of basis. By analogy with the
metric tensor, Mij is a doubly covariant tensor and therefore transforms according
to the rule

Mi 0j 0 D Mij J
i
i 0J

j

j 0 : (7.33)

To express this identity in the matrix notation, first rewrite it as follows:

Mi 0j 0 D J ii 0Mij J
j

j 0 : (7.34)
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Note that the first index of J i
i 0

is contracted with the first index of Mij and the

second index of Mij is contracted with the first index of J j
j 0 . Therefore, the matrix

equivalent of equation (7.33) is

M 0 D XTMX: (7.35)

Finally, we discuss the matrix representation of linear transformations. Suppose
that v is the image of u under the linear transformation A:

v D A .u/ : (7.36)

In the matrix notation, this relationship is represented by the matrix product

v D Au: (7.37)

In the tensor notation, since both ui and vi have superscripts, the natural way to
express equation (7.37) is to let the first in index in the representation of A be a
superscript and the other a subscript:

vi D Aij uj ; (7.38)

This identity immediately suggests that Aij is a tensor with one contravariant
and one covariant dimension. This is indeed the case. Therefore Aij transforms
according to the formula

Ai
0

j 0 D Aij J
i 0

i J
j

j 0 : (7.39)

Thus, in the matrix notation, the matrices A0 and A are related by

A0 D X�1AX: (7.40)

As a direct consequence of the corresponding theorem in linear algebra, we
conclude from equation (7.40) that the eigenvalues of a tensor Aij are invariant
under a change of coordinates.

7.4 Self-Adjoint Transformations and Symmetry

A linear transformation A is called self-adjoint if, for any two vectors u and v,

.Au; v/ D .u; Av/ : (7.41)

Self-adjoint operators are of central importance in applied mathematics, physics,
and engineering.

Self-adjoint transformations are said to be represented by symmetric matrices.
In actuality, this is only true when the transformation is expressed with respect
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to an orthonormal basis. The orthonormality of the basis is often implied or
omitted altogether. If the basis is not orthonormal, the statement is generally untrue.
Fortunately, the tensor notation alerts us to the potential danger. After all, a tensor
Aij that represents the linear transformation has one superscript and one subscript.
That is not a kind of system to which the term symmetric can even be applied in the
usual sense. To clarify, a system Tij is called symmetric if Tij D Tji . What would
symmetry mean for a system such as Aij ?

The tensor notation will help us discover the correct general characterization
of matrices that represent self-adjoint transformations. Express the inner products
.Au; v/ and .u; Av/ in the tensor notation

.Au; v/ D MijA
i
kukvj (7.42)

.u; Av/ D Mij uiAjkvk: (7.43)

Reorder the terms and rename the indices in the second identity as follows:

.u; Av/ D MkiA
i
j ukvj : (7.44)

Since these identities hold for any uk and vj , we have

MijA
i
k D MkiA

i
j : (7.45)

Rename the indices so that i and j are the two live indices, and take advantage of
the symmetry of Mij :

MkiA
k
j D MkjA

k
i : (7.46)

Finally, rewrite equation (7.46) in the matrix notation:

MA D ATM: (7.47)

Equivalently,

A D M�1ATM: (7.48)

This is a general statement characterizing a matrix A representing a self-adjoint
transformation. It generally implies that A is not symmetric, unless the basis is
orthonormal (M D I ).

The tensor notation offers an elegant way to capture equation (7.48). Use the
Gram tensor to lower the superscript on both sides of the equation (7.46).

Aij D Aji : (7.49)
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What a nice identity! It states that, with the index lowered, the tensor Aij is
symmetric. Of course, that is not equivalent to the matrix A being symmetric
because the matrix A has the entries Aij , not Aij . When we raise the index i on
both sides of equation (7.49), we obtain another elegant identity equivalent to (7.49)

Ai�j D A�i
j : (7.50)

The tensor on the left has the same entries as the matrix A. The tensor on the
right does not. Equation (7.49) illustrates the importance of maintaining or carefully
ordered list of indices.

7.5 Quadratic Form Optimization

Quadratic form optimization is a problem in which access to the individual entries of
a matrix is necessary in order to apply calculus. A quadratic form is a multivariable
generalization of a parabola with a linear shift:

f .x/ D 1

2
ax2 � bx: (7.51)

When a > 0, f .x/ has a minimum at

x D b

a
(7.52)

since

f 0 .x/ D ax � b: (7.53)

In the case of N variables x1; : : : ; xN organized into a column called x, the
quadratic form is given by the matrix expression

f .x/ D 1

2
xT Ax � xT b; (7.54)

where A is a symmetric positive definite matrix and the entries of

b D
2
4 b1� � �
bN

3
5 (7.55)

are constants. The positive definiteness of A is analogous to a > 0 in
equation (7.51). It is a sufficient and necessary condition in order for f .x/ to
have a well-defined minimum. The minimum of f .x/ occurs at x given by

Ax D b; (7.56)
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which is seen to be entirely analogous to (7.52). Our goal is to derive equation (7.56)
by the methods of calculus: that is, by equating the partial derivatives of f .x/ to
zero.

Exercise 112. Linear algebra offers a derivation that does not require calculus.
Introduce a new vector r D A�1x � b and express f .x/ in terms of r . Show
that the minimum of the new quadratic form occurs at r D 0.

Exercise 113. Without the tensor notation, the calculus approach proves surpris-
ingly cumbersome. Derive the partial derivatives of

f .x; y/ D 1

2
A11x

2 C A12xy C 1

2
A22y

2 � b1x � b2y (7.57)

and show that this calculation leads to equation (7.56).

Exercise 114. Perform the same task in three dimensions for f .x; y; z/.

We now use the tensor notation to carry out the calculation outlined in the these
exercises. Denote the independent variables by xi , the matrixA byAij (Aij D Aji ),
and the vector b by bi . The quadratic form (7.54) is given by the expression

f .x/ D 1

2
Aij x

ixj � bixi ; (7.58)

where we have customarily suppressed the index of the function argument. Let us
calculate the partial derivative of f .x/ with respect to xk . By the product rule,

@f

@xk
D 1

2
Aij

@xi

@xk
xj C 1

2
Aij x

i @x
j

@xk
� bi @x

i

@xk
: (7.59)

The partial derivative @xi=@xk is captured by the Kronecker symbol:

@xi

@xk
D ıik: (7.60)

Thus,

@f

@xk
D 1

2
Aij ı

i
kx

j C 1

2
Aij x

i ı
j

k � bi ıik; (7.61)

which simplifies to

@f

@xk
D 1

2
Akj x

j C 1

2
Aikx

i � bk: (7.62)
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Since Aij is symmetric, the first two terms on the right-hand side are equal:

@f

@xk
D Akix

i � bk: (7.63)

Equating the partial derivatives @f=@xk to zero yields

Akix
i D bk; (7.64)

which, of course, is equivalent to equation (7.56)!

Exercise 115. Show that the Hessian @2f=@xi@xj equals

@2f

@xi@xj
D Aij : (7.65)

7.6 The Eigenvalue Problem

In this section, we show that, much like Ax D b, the eigenvalue problem

Ax D �Mx (7.66)

can be formulated as a variational problem. The matrix M is assumed to be
symmetric and positive define. The variational formulation is to find the extrema of

f .x/ D Aij x
ixj (7.67)

subject to the constraint that

Mij x
ixj D 1: (7.68)

Geometrically, equation (7.68) states that the vector xi unit length. Use a Lagrange
multiplier � to incorporate the constraint in the augmented function E .x; �/

E .x; �/ D Aij x
ixj � � �Mij x

ixj � 1	 : (7.69)

Following earlier analysis,

1

2

@E .x/

@xi
D Aij x

j � �Mij x
j : (7.70)
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Equating the partial derivatives to zero yields

Aij x
j D �Mij x

j (7.71)

which is equivalent to the eigenvalue problem (7.66).

Exercise 116. Show that equation (7.71) can be written as

Aij x
j D �xi (7.72)

and as

Aij x
j D �xj : (7.73)

Exercise 117. Show that the eigenvalues of the generalized equation (7.71) are
invariant with respect to change of basis.

Exercise 118. Show that the eigenvalues of the generalized equation (7.71) are
given by the Rayleigh quotient

� D Aij x
ixj : (7.74)

7.7 Summary

In this chapter, we discussed the interplay between tensor calculus and linear
algebra. We discovered that a number of concepts in linear algebra are clarified with
the help of tensor notation. In particular, the matrix rules for the transformations of
vector components, the Gram matrix, and the matrix representing a linear operators
can be determined from the tensor properties of these objects. On the other hand,
tensor calculus draws on several fundamental results from linear algebra. One of
those results in the invariance of eigenvalues under similarity transformations. In
Chap. 13, the invariance of eigenvalues plays an important role in the study of
curvature.



Chapter 8
Covariant Differentiation

8.1 Preview

Chapter 6 demonstrated that the tensor property is the key to invariance. However,
a partial derivative @=@Zi of a tensor is itself not a tensor. This is a major obstacle
in the way of developing differential geometry using the coordinate approach. For
example, the expression @T i=@Zi cannot be used as a definition of divergence since
it evaluates to different values in different coordinates. Similarly, Zij @2T=@Zi@Zj

is not invariant and is therefore not a legitimate definition of the Laplacian.
This difficulty was overcome by Gregorio Ricci-Curbastro and his student Tullio

Levi-Civita (Fig. 8.1) in their celebrated work Methods of Absolute Differential
Calculus and Their Applications [34] in the year 1900. Levi-Civita later wrote a
classic textbook on the subject entitled The Absolute Differential Calculus [28].

The solution comes in the form of a new differential operator, ri , the covariant
derivative. Similarly to the partial derivative, the covariant derivative satisfies the
familiar sum and product rules. Furthermore, it has the desirable property that it
produces tensors out of tensors. The resulting tensor is one covariant order greater
than the original tensor. The contravariant derivative r i is defined by raising the
index on the covariant derivative:

r i D Zijrj : (8.1)

The new operator has a number of other desirable properties. One of those
key properties is that covariant differentiation reduces to the partial differentiation
in Cartesian (more generally, affine) coordinates. This enables us to define the
divergence of a tensor field T i as

ri T
i (8.2)

and the Laplacian of the invariant field T as

Zijrirj T: (8.3)

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 8, © Springer Science+Business Media New York 2013
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Fig. 8.1 Gregorio Ricci-Curbastro (1853–1925), son of a famous engineer, is considered the
inventor of tensor calculus. Tullio Levi-Civita (1873–1941) was Ricci-Curbastro’s student.
A superb geometer, he was one of the key figures in mathematical foundations of general relativity.
Many interesting insights into Levi-Civita’s life can be found in [33]

On the one hand, these expressions are invariant. On the other hand, they coincide
with the usual definitions in Cartesian coordinates. Therefore, these equations are
valid in all coordinates.

The Christoffel symbol defined in Chap. 5 plays a central role in covariant differ-
entiation. The following motivating example illustrates the role of the Christoffel
symbol. Following the motivating example, we present the formal definition of
the covariant derivative and devote the rest of the chapter to establishing its key
properties.

8.2 A Motivating Example

Consider an invariant vector field V defined in the Euclidean space referred to
coordinates Zi . Then the new object obtained as the partial derivative

@V
@Zj

(8.4)

is a tensor (with vector components), as was demonstrated in Chap. 6. Decompose
V with respect to the covariant basis Zi :

V D V iZi : (8.5)
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Substituting this expansion in equation (8.4) and applying the product rule, we
obtain

@V
@Zj

D @V i

@Zj
Zi C V i @Zi

@Zj
: (8.6)

The partial derivative @Zi =@Zj of the covariant basis can, of course, be expressed in
terms of the Christoffel symbol �kij . This is, in fact, the very definition of �kij which
was first given in equation (5.56) and repeated here

@Zi
@Zj

D �kijZk: (5.56)

Thus

@V
@Zj

D @V i

@Zj
Zi C V i�kijZk: (8.7)

Our next goal is to factor out Zi , so that what remains in parentheses can be
interpreted as the components of @V=@Zj with respect to the covariant basis.
Rename the dummy index k to i in the second term. In order to avoid using the
index i twice in a single expression, also rename the already present dummy index
i to m. Then factor out Zi :

@V
@Zj

D
�
@V i

@Zj
C �imj V

m

�
Zi : (8.8)

We are nearly done. In a final step, take advantage of the symmetry of the Christoffel
symbol with respect to the two lower indices to rewrite this expression as

@V
@Zj

D
�
@V i

@Zj
C �ijmV

m

�
Zi : (8.9)

Now comes the key point: the expression in parentheses

@V i

@Zj
C �ijmV

m (8.10)

is a tensor. This is because it represents the components of a tensor with respect to
the covariant basis Zi . (In Sect. 6.3.5, we showed that the component of a vector
with respect to Zi is a contravariant tensor.). It is interesting that neither term in this
expression is a tensor, yet they combine to produce one.

The expression @V i=@Zj C �ijmV
m is a better measure of the rate of change

in the tensor V i than @V i=@Zj alone. The quantity @V i=@Zj captures the rate
of change in the component V i . But it also takes the (changing) covariant basis
Zi to rebuild V from V i . For example, the vector field V may be constant but, in
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curvilinear coordinates, the components V i vary. Conversely, a constant tensor field
V i in curvilinear coordinates corresponds to a varying vector field V. However,
that partial derivative @V i=@Zj only measures the rate of change of the tensor field
@V i=@Zj and ignores the change in the basis Zi .

The combined expression @V i=@Zj C �ijmV
m captures the rates of change of

both elements that contribute to V: the component V i and the covariant basis Zi .
And, as equation (8.9) shows, the tensor combination @V i=@Zj C�ijmV m represents
precisely the components of the rate of change in the vector field V. We therefore
propose the following definition of the covariant derivative rj of a contravariant
tensor V i :

rj V
i D @V i

@Zj
C �ijmV

m: (8.11)

This definition needs to be modified for covariant tensors. If V is decomposed
with respect to the contravariant basis Zi

V D ViZi (8.12)

then we find

@V
@Zj

D
�
@Vi

@Zj
� �mij Vm

�
Zi : (8.13)

We similarly conclude that the combination @Vi=@Zj � �mij Vm is a tensor and that
it perfectly represent the rate of change of the vector field V. Thus, we define the
covariant derivative rj of a covariant tensor Vi according to

rj Vi D @Vi

@Zj
� �mij Vm: (8.14)

The definitions (8.11) and (8.14) are quite similar. The differences are the minus
sign in the case of the covariant tensor and index on which the Christoffel symbol is
contracted with original tensor.

Exercise 119. Derive equation (8.13).

Exercise 120. Explain why rj Vi is a tensor.

Exercise 121. In Exercise 82, you were asked to show that the acceleration of a
particle moving along the curve Zi � Zi .t/ is given by

Ai D dV i

dt
C �ijkV

j V k: (8.15)

Conclude that Ai is a tensor.

Polcz Peter
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8.3 The Laplacian

We now present the Laplacian operator—a central differential operator in applied
mathematics. This discussion also illustrates the variant property of the covariant
derivative. In Chap. 6, a variant was defined as an object that can be constructed
by a similar rule in various coordinate systems. The covariant derivative satisfies
this important requirement: it can be interpreted by a consistent algorithm across all
coordinate systems.

The Laplacian �F of an invariant field F is usually defined by its expression in
Cartesian coordinates:

�F D @2F

@x2
C @2F

@y2
: (8.16)

This definition immediately raises a number of questions, the first one being whether
this expression evaluates to the same value in different Cartesian coordinates. The
answer is yes, but to show this outside of the tensor framework requires a lengthy
calculation. Nevertheless, (8.16) is a legitimate definition and is our starting point.

In tensor calculus, the Laplacian is defined by the expression

�F D Zijrirj F: (8.17)

So far, we have defined the covariant derivative only for tensors of order one.
For invariants, such as F , the covariant derivative is defined simply as the partial
derivative

riF D @F

@Zi
: (8.18)

This property is discussed below in Sect. 8.6.2.
Later in this chapter, when we have proved the metrinilic, product, and contrac-

tion properties of the covariant derivative, the definition of the Laplacian is captured
by an even more compact expression

�F D rir iF: (8.19)

The central point is the invariance of the expression in (8.17). It is an invariant
because all elements of the expression are tensors. It is therefore guaranteed to
produce the same value in all coordinates. This simple point is the central idea in
tensor calculus and its importance cannot be overstated.

The other important point is the algorithmic nature of the covariant derivative and
the definition (8.17). The expression in (8.17) can be interpreted the same way in all
coordinate systems and in each case produces an expression in terms of conventional
partial derivatives that is valid in that particular coordinate system.
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In Cartesian coordinates, the Christoffel symbol vanishes and the covariant
derivatives reduce to partial derivatives:

�F D Zij @2F

@Zi@Zj
: (8.20)

The contravariant metric tensor Zij has two nonzero components Z11 D Z22 D 1.
Therefore, among the four terms in (8.20), only two survive:

�F D @2F

@Z1@Z1
C @2F

@Z2@Z2
: (8.21)

In other words,

�F D @2F

@x2
C @2F

@y2
: (8.22)

Thus, in Cartesian coordinates, the definition (8.17) agrees with the conventional
definition (8.16). We can also conclude that the expression (8.22) evaluates to the
same value in all Cartesian coordinate systems.

We now calculate the expression for the Laplacian in polar coordinates. We
mention at the outset that a more effective way to calculate the Laplacian is
expressed by the Voss–Weyl formula discussed in Sect. 9.8.

Recall the nonzero entries of the Christoffel symbols in polar coordinates
calculated in Chap. 5:

�122 D �r (5.77)

�212 D �221 D 1

r
: (5.78)

The function F is now assumed to be expressed as a function of the coordinates
Z1 D r and Z2 D 	 . Since the covariant derivative coincides with the partial
derivative for invariants, the values of rj F are

r1F D @F

@r
(8.23)

r2F D @F

@	
: (8.24)

By definition, the second-order covariant derivative rirj F is given by

rirj F D @rj F

@Zi
� �kijrkF D @2F

@Zi@Zj
� �kij

@F

@Zk
: (8.25)
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This indicial identity captures the following four relationships:

r1r1F D @2F

@r2
� �k11

@F

@Zk
(8.26)

r1r2F D @2F

@r@	
� �k12

@F

@Zk
(8.27)

r2r1F D @2F

@	@r
� �k21

@F

@Zk
(8.28)

r2r2F D @2F

@	2
� �k22

@F

@Zk
: (8.29)

Plugging in the values of the Christoffel symbol, we find

r1r1F D @2F

@r2
(8.30)

r1r2F D @2F

@r@	
� 1

r

@F

@	
(8.31)

r2r1F D @2F

@	@r
� 1

r

@F

@	
(8.32)

r2r2F D @2F

@	2
C r

@F

@r
: (8.33)

Notice that r1r2F and r2r1F are equal. This is an example of the commutative
property of the covariant derivative. Commutativity is discussed in Sect. 8.6.4.

Finally, recall the nonzero entries Z11 D 1 and Z22 D 1
r2

of the covariant
metric Zij :

Zijrirj F D Z11r1r1F CZ22r2r2F D @2F

@r2
C 1

r2

�
@2F

@	2
C r

@F

@r

�
; (8.34)

or

Zijrirj F D @2F

@r2
C 1

r

@F

@r
C 1

r2
@2F

@	2
: (8.35)

An essential point of this discussion is that the expressions (8.16) and (8.35) for
the Laplacian in Cartesian and polar coordinates are different in terms of partial
derivatives but can both be obtained from the tensor definition (8.17).

Exercise 122. Show that in cylindrical coordinates in three dimensions, the Lapla-
cian is given by

Zijrirj F D @2F

@r2
C 1

r

@F

@r
C 1

r2
@2F

@	2
C @2F

@z2
: (8.36)

Polcz Péter
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Show that this expression is equivalent to

Zijrirj F D 1

r

@

@r

�
r
@F

@r

�
C 1

r2
@2F

@	2
C @2F

@z2
: (8.37)

Exercise 123. Show that in spherical coordinates in three dimensions, the Lapla-
cian is given by

Zijrirj F D @2F

@r2
C 2

r

@F

@r
C 1

r2
@2F

@	2
C cot 	

r2
@F

@	
C 1

r2 sin 	

@2F

@
2
: (8.38)

Show that this expression is equivalent to

Zijrirj F D 1

r2
@

@r

�
r2
@F

@r

�
C 1

r2 sin 	

@

@	

�
sin 	

@F

@	

�
C 1

r2 sin2 	

@2F

@
2
: (8.39)

Exercise 124. Derive the expression for the Laplacian in two dimensions in affine
coordinates X and Y related to the Cartesian coordinates x and y by stretching:

X D Ax (8.40)

Y D By: (8.41)

8.4 The Formula for ri Zj

The discussion of the Laplacian served as a good illustration of the mechanics of the
covariant derivative. We would now like to give another such illustration, in which
the covariant derivative is applied to the covariant basis Zi in polar coordinates. This
calculation illustrates the metrinilic property of the covariant derivative discussed
in detail below in Sect. 8.6.7. As we have been consistently emphasizing, tensor
operations work equally well for tensors with scalar and vector elements. The
covariant derivative is yet another example of this.

Let us begin by calculating the vector r1Z1. By the definition of the covariant
derivative, we have

r1Z1 D @Z1
@r

� �k11Zk: (8.42)

Here, we would like to point out an important characteristic of the covariant
derivative: each element of riZj involves all elements of Zi . This is unlike the
partial derivative, where @Z1=@r can be computed by itself, without referring to Z2.

As we established in Chap. 5, Z1 is a unit vector that points directly away from
the origin. Therefore, for a given 	 , Z1 does not change with r and we have
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@Z1
@r

D 0: (8.43)

Furthermore, since both entries �k11 of the Christoffel symbol vanish, we have

r1Z1 D 0: (8.44)

Next, let us calculate r1Z2. First, we write out the definition:

r1Z2 D @Z2
@r

� �k12Zk: (8.45)

The vectors Z2 are orthogonal Z1 and their length equals r . Therefore, for a given
value of the coordinate 	 , the vectors Z2 all point in the same direction and their
length grows linearly with r . Thus @Z2@r is the unit vector pointing in the same
direction. Since �112 D 0 and �212 D r�1 [see equation (5.78)] we find that the
combination �k12Zk is the unit vector that points in the direction opposite of Z2 and
therefore

r1Z2 D 0: (8.46)

We now turn to r2Z1 which is given by

r2Z1 D @Z1
@	

� �k21Zk: (8.47)

The rest of the calculation for r2Z1 is contained in the following exercises.

Exercise 125. Using geometric arguments, explain why @Z1=@	 is the unit vector
that is orthogonal to Z1.

Exercise 126. Conclude that

r2Z1 D 0: (8.48)

Exercise 127. Give an alternative derivation of this identity by showing the general
property that riZj is a symmetric object

riZj D rjZi : (8.49)

Hint: @Zj =@Zi D @2R=@Zi@Zj and �kij D �kji .

Exercise 128. Show that

r2Z2 D 0: (8.50)
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We have just shown that all elements of riZj in polar coordinates are zero:

riZj D 0: (8.51)

Importantly, this is not a special property of polar coordinates, but true in all
coordinates. This is an important feature of the covariant derivative. Note that one
of the main reasons that Cartesian coordinates are so convenient in many problems
is that the coordinate basis i; j is unchanged from one point to another. Operating in
curvilinear coordinates sacrifices this desirable property. However, at least from the
algebraic point of view, the covariant derivative restores it!

This important property of the covariant derivative can be demonstrated in several
ways. Once we prove that tensor property of the covariant derivative, we will be
able to conclude that riZj vanishes in all coordinate systems because it vanishes in
a particular coordinate system. (Note, that we could have shown even more easily
that riZj D 0 in Cartesian coordinates.) This is a common way of showing that a
tensor vanishes. It was justified in Exercise 94 in Chap. 6.

This property can also be easily demonstrated by a direct algebraic calculation.
By definition,

riZj D @Zj
@Zi

� �kijZk: (8.52)

However, by the very definition of the Christoffel symbol given in equation (5.56),

@Zj
@Zi

D �kijZk: (8.53)

Therefore

riZj D 0: (8.54)

Exercise 129. Show similarly that

riZj D 0: (8.55)

We now turn to the task of defining the covariant derivative for variants of order
greater than one.

8.5 The Covariant Derivative for General Tensors

The definitions (8.11) and (8.14) can be extended to variants with arbitrary
collections of indices. The general definition includes a Christoffel term for each
index. We give the complete definition for a variant T ij with one covariant and one
contravariant index. It is clear how this definition extends to variants with other
combinations of indices. For T ij , the definition reads
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rkT
i
j D @T ij

@Zk
C �ikmT

m
j � �mjkT im: (8.56)

As you can see, for each index there is a term in which T ij is multiplied by the
Christoffel symbol and the index is contracted with the appropriate index from the
Christoffel symbol.

Let us apply the recipe encoded in equation (8.56) to the triply covariant tensor
Tijk . In additional to the partial derivative @Trst =@Zk , we have a Christoffel term
with a minus sign for each covariant index:

rkTrst D @Trst

@Zk
� �mkrTmst � �mksTrmt � �mktTrsm: (8.57)

Exercise 130. Determine the expression for the covariant derivative rlT
ij

k .

Exercise 131. Show that

rkı
i
j D 0: (8.58)

This is a special case of the more general metrinilic property of the covariant
derivative discussed below in Sect. 8.6.7.

In the next section we discuss the key properties of the covariant derivative.
These properties make the covariant derivative as simple to use as the partial
derivative. However, its tensor property make it much more powerful than the partial
derivative. When an analysis is carried out within the tensor framework that employs
covariant differentiation, that analysis is simultaneously valid in all coordinate
systems. Therefore, the tensor approach offers the best of both worlds: it utilizes
the advantages of coordinate systems while producing results that are independent
of coordinate systems.

8.6 Properties of the Covariant Derivative

8.6.1 The Tensor Property

The key property of the covariant derivative and, in fact, the very motivation for its
invention, is that it produces tensors out of tensors. The implications of this property
are crucial and far reaching. For example, the fact that

riVj (8.59)

is tensor implies that
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ZijriVj D rj Vj (8.60)

is an invariant and is therefore a suitable definition for the divergence of a tensor
field Vj . Similarly, the fact that rirj F leads to the definition of the Laplacian as
we saw in Sect. 8.3.

In this section, we would like to present an elegant argument that proves the
tensor property of the covariant derivative. We have already demonstrated the tensor
property for the contravariant component V i of an invariant vector field V. However,
any tensor or order one can be treated as the component of an invariant field and that
is the basis of the proof.

Suppose that V i is a contravariant tensor. Then V D V iZi is an invariant and its
partial derivative

@V
@Zj

(8.61)

is a tensor. We repeat equation (8.13)

@V
@Zj

D
�
@V i

@Zj
C �ijmV

m

�
Zi ; (8.13)

and again use the argument that the combination @V i=@Zj C �ijmV
m must be a

tensor since it represents the component of a tensor field (@V=@Zj ) with respect to
the covariant basis Zi . Therefore, rj V

i D @V i=@Zj C �ijmV
m is a tensor.

Exercise 132. Prove that rj Vi is a tensor by forming the invariant ViZi and
analyzing its partial derivative with respect to Zj .

I believe that this elegant proof of the tensor property leaves little doubt that, for a
tensor Ti with vector elements, the covariant derivative produces a tensor. However,
the argument doesn’t quite work since the contraction TiZi is meaningless. Instead,
one needs to consider the scalar invariant T formed by the dot product T D Ti � Zi
and this argument is left as an exercise.

Exercise 133. For a contravariant vector Ti , prove that rjTi is a tensor by forming
the invariant T D Ti � Zi .

Exercise 134. For a covariant vector Ti , prove that rjTi is a tensor by forming the
invariant T D Ti � Zi .

So far, we have demonstrated the tensor property of the covariant derivative for
tensors of order one with scalar and vector elements. This opens up an elegant way
for proving the tensor property of the covariant derivative for tensors of order two.
For example, suppose that Tij is a covariant tensor of order two. Then Tj D TijZi

is a covariant tensor of order one for which the tensor property of the covariant
derivative has already been established. Therefore,

rkTj (8.62)
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is a tensor. By the product rule, which is proved below in Sect. 8.6.6,

rkTj D rk

�
TijZi

	 D rkTij Zi C TijrkZi : (8.63)

Since rkZi is zero, we have

rkTj D rkTij Zi

and if follows that rkTij is a tensor since it is the covariant component of a tensor
field rkTj .

Exercise 135. Show similarly that rkT
i
j and rkT

ij are tensors.

Exercise 136. Show, by forming dot products with the covariant and contravariant
bases, that rkTjj , rkTij , and rkTij are tensors.

Exercise 137. Argue the general tensor property by induction. That is, if T ijk:::rst ::: is
a tensor, then rpT

ijk:::
rst ::: is also a tensor.

This concludes our discussion of the paramount tensor property of the covariant
derivative. The proof present in this section is quite elegant and robust. However,
it is also of great value to be able to demonstrate the tensor property more directly
by showing that the covariant derivative of a tensor transforms under a change of
variables in an appropriate way. This is accomplished below in Sect. 8.7

8.6.2 The Covariant Derivative Applied to Invariants

The covariant derivative rk coincides with partial derivative @=@Zk for invariants,
or any variants of order zero. Rather than labeling this fact as a property of the
covariant derivative, it is better viewed as a reasonable extension of definition (8.56)
to variants of order zero. Indeed, definition (8.56) instructs us to include a Christoffel
term of each index. Since variants of order zero do not have any indices, the right-
hand side reduces to a single term with the partial derivative. This property is used
quite frequently in tensor calculations when there is a need to relate partial and
covariant derivatives.

8.6.3 The Covariant Derivative in Affine Coordinates

The covariant derivative rk coincides with partial derivative @=@Zk in affine and,
in particular, Cartesian coordinates. This is true because the Christoffel symbol
vanishes in affine coordinates. This is an important property and we have already
used it to a great effect in a proof of the metrinilic property. It is frequently
used in this way: a certain characteristic is demonstrated in affine coordinates and
subsequently extended to general coordinates by the tensor property. This way of
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reasoning was illustrated in Exercise 94 in Chap. 6. Another great example of a proof
like this comes in the very next section where we show that covariant derivatives
commute. It is a fundamental property of partial derivatives, but it proves much
more subtle and geometrically insightful for covariant derivatives.

8.6.4 Commutativity

Covariant derivatives commute, that is

rkrlT
i
j D rlrkT

i
j (8.64)

and this property holds for tensors with any collection of indices. The difference

rkrlT
i
j � rlrkT

i
j : (8.65)

is often written as .rkrl � rlrk/ T
i
j in order to emphasize the switching of the

operators. The operator rkrl � rlrk is commonly referred to as the commutator.
The cornerstone of the upcoming argument is that the difference (8.65) is a

tensor. Furthermore, in Cartesian coordinates, it reduces to the difference of partial
derivatives

@2T ij

@Zk@Zl
� @2T ij

@Zl@Zk
(8.66)

and therefore vanishes due to the commutative property of the partial derivative.
Consequently, being a tensor, it must vanish in all coordinate systems.

Given how easy it is to justify, commutativity may seem to be a relatively
unremarkable property. However, this couldn’t be further from the truth. For
example, in Sect. 8.129, we use this fact to show that the object Rk�mij D
@�kim=@Z

j � @�kjm=@Z
i C �kjn�

n
im � �kin�

n
jm is a tensor and must therefore vanish

in all coordinates system. This is quite a remarkable relationship which can be used
for many purposes. For example, given a variant Gi

jk of order three, it can be used

to determine whether Gi
jk can serve as the Christoffel symbol for some coordinate

system.
Furthermore, the commutative property of the covariant derivative and the cor-

responding property that Rk�mij D 0 no longer holds in non-Euclidean spaces. Non-
Euclidean spaces arise in many fundamental applications that include differential
geometry on curved surfaces and Einstein’s general relativity theory. We study the
differential geometry on curved surfaces starting with Chap. 10.
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8.6.5 The Sum Rule

The covariant derivative satisfies the sum rule

rk

�
T ij C Sij

�
D rkT

i
j C rkS

i
j : (8.67)

This rule holds for tensors with arbitrary collections of indices and its proof is left
as an easy exercise. The sum rule is easily generalized to linear combinations

rk

�
aT ij C bSij

�
D arkT

i
j C brkS

i
j ; (8.68)

where a and b are constants. There’s very little more that can be said about the sum
rule and we are therefore moving on to the product rule.

8.6.6 The Product Rule

The covariant derivative satisfies the product rule also known as Leibniz’s law. The
product rule reads

rk

�
T iUj

	 D rkT
i Uj C T irkUj (8.69)

and holds for tensors with arbitrary collections of indices. To demonstrate the
product rule for SiTj , apply the definition of the covariant derivative

rk

�
T iUj

	 D @
�
T iUj

	
@Zk

C �ikmT
mUj � �mkj T iUm: (8.70)

Since the partial derivative @=@Zk satisfies the usual product rule, we have

rk

�
T iUj

	 D @T i

@Zk
Uj C T i

@Uj

@Zk
C �ikmT

mUj � �mkj T iUm: (8.71)

Group the first term with the third and the second with the fourth

rk

�
T iUj

	 D
�
@T i

@Zk
C �ikmT

m

�
Uj C T i

�
@Uj

@Zk
� �mkjUm

�
; (8.72)

and note that the parenthesized expressions are rkT
i and rkUj . This completes the

proof.
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Note that the product rule also applies in the case of the dot product:

rk

�
Ti � Uj

	 D rkTi � Uj C Ti � rkUj : (8.73)

The proof of this property is left as an exercise.

8.6.7 The Metrinilic Property

The metrics Zi , Zi , Zij , Zij and ıij vanish under the covariant derivative. This is
the metrinilic property. For the bases Zi and Zi , we have already encountered this
property in Sect. 8.4, where it was demonstrated in two different ways. Furthermore,
this property was shown for the Kronecker symbol ıij in Exercise 131.

For the metric tensors Zij and Zij it can be shown by a simple application of the
product rule. For example, for the covariant metric tensor Zij , we have

rkZij D rk

�
Zi � Zj

	 D rkZi � Zj C Zi � rkZj D 0:

Exercise 138. Show the metrinilic property for the contravariant metric tensor Zij

by the product rule.

Exercise 139. Show the metrinilic property for the Kronecker symbol ıij by the
product rule.

Exercise 140. Show the metrinilic property for the delta symbols ıijrs and ıijkrst by
expressing them in terms of the Kronecker delta symbol ıij .

Exercise 141. Show the metrinilic property for the delta symbol ıijrs by a direct
application of the definition

Exercise 142. Use the property that rkZij D 0 to show that

@Zij

@Zk
D �i;jk C �j;ik: (8.74)

Exercise 143. Use the property that rkZ
ij D 0 to derive the expression of

@Zij =@Zk:
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Let us summarize the metrinilic property:

rjZi ; rjZi D 0 (8.75)

rkZij ; rkZ
ij D 0 (8.76)

rpı
i
j ; rpı

ij
rs; rpı

ijk
rst D 0: (8.77)

In Chap. 9, we encounter the Levi-Civita symbols "ijk and "ijk that also belong
to the group of metrics. The metrinilic property extends to the Levi-Civita symbols
as well:

rp"
ijk;rp"ijk D 0:

The metrinilic property has far-reaching implications. The first impact is on the
essential operation of index juggling. We have grown accustomed to raising and
lowering free indices on both sides of an identity. For example, we know that

Ti D S
�j
i U

kl
j Vkl (8.78)

is equivalent to

Si D T ijU kl
j Vkl : (8.79)

Let us remind ourselves of why this true: the latter identity can be obtained from
the former by contracting both sides with the contravariant metric Zir (and then
renaming r ! i ).

What happens, however, when the index that we intend to juggle occurs under
the covariant derivative? For example, consider the identity

Si D rkT
j
i U

kl
j Vl : (8.80)

Contracting both sides with Zir yields

Sr D ZirrkT
j
i U

kl
j Vl : (8.81)

Can Zir be passed under the covariant derivative so that

Sr D rk

�
ZirT

j
i

�
Ukl
j Vl ‹ (8.82)

Thanks to the metrinilic property the answer is yes. By the product rule, we have

ZirrkT
�j
i D rk

�
ZirT

j
i

�
� rkZ

ir T
j
i (8.83)

and the second term vanishes by the metrinilic property, yielding

ZirrkT
�j
i D rk

�
ZirT

j
i

�
: (8.84)
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This shows that metric tensors pass freely across the covariant derivative. Thus,

Sr D rkT
rj U kl

j Vl ; (8.85)

or, by renaming r ! i ,

Si D rkT
ij U kl

j Vl ‹ (8.86)

We have therefore shown that free indices can be juggled across the covariant
derivative.

We have also grown accustomed to the fact that contracted indices can exchange
flavors. For example,

Sij T
k
i D Sij T

ik: (8.87)

Is this operation still valid if the exchange takes place across the covariant derivative,
as in

SijrlT
k
i D SijrlT

ik ‹ (8.88)

Once again, thanks to the metrinilic property, the answer is yes and the proof is left
as an exercise.

Exercise 144. Show that contracted indices can exchange flavors across the covari-
ant derivative.

In addition to being able to freely juggle indices on the arguments of the covariant
derivative, we are able to freely juggle indices on the covariant derivative itself. For
example, the expression

T iriS
j

k (8.89)

is clearly equivalent to

Tir iS
j

k : (8.90)

Furthermore,

Tirjr iSkl D T irjriS
k
l : (8.91)

Finally, the Laplacian �F D Zijrirj F can be written compactly as

�F D rir iF: (8.92)

Written in this way, it is quite reminiscent of its Cartesian origins as the sum of
second derivatives. We do not need to state again, however, just how powerful
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equation (8.92) is by virtue of being valid in any coordinate system. Since the
symbol rir i is so compact, from this point on we will is it instead of the more
conventional symbol �.

Another important consequence of the metrinilic property is that we are able
to study vector fields by analyzing their components. Suppose that V i is the
contravariant component of the vector field V:

V D V iZi : (8.93)

Then

@V
@Zk

D rkV D rkV
i Zi : (8.94)

Therefore, we see that the tensor rkV
i carries all of the information regarding the

rate of change of the vector field V. By contrast, the partial derivative @V i=@Zk fails
to capture the change in the accompanying covariant basis.

8.6.8 Commutativity with Contraction

Covariant differentiation commutes with contraction. Consider the expression

rkT
i
ij : (8.95)

It can be interpreted in two ways. First, it can be seen as the covariant derivative
applied to the tensor Sj D T iij . The tensor Sj is of order one. Its covariant derivative
rkSj is given by

rkSj D @Sj

@Zk
� �mjkSm: (8.96)

Therefore, in this interpretation, rkT
i
ij reads

rkT
i
ij D @T iij

@Zk
� �mkj T iim: (8.97)

Alternatively, rkT
i
ij can be interpreted as the covariant derivative applied to

the tensor T irj of order three to produce the tensor rkT
i
rj of order four which is

subsequently contracted on i and r . Following this interpretation, the tensor rkT
i
rj

is given by

rkT
i
rj D @T irj

@Zk
C �ikmT

m
rj � �mkrT imj � �mkj T irm: (8.98)
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Now, let us contract both sides on i and r :

rkT
i
ij D @T iij

@Zk
C �ikmT

m
ij � �mkiT imj � �mkj T iim: (8.99)

The terms �ikmT
m
ij are �mkiT

i
mj correspond to the two indices in T irj that we

contracted. These terms are equal as can be seen by exchanging the names of the
indices i and m in one of them. Therefore, these terms cancel and we find that the
second interpretation of the expression rkT

i
ij yields

rkT
i
ij D @T iij

@Zk
� �mkj T iim; (8.100)

which is equivalent to the contraction-first interpretation.
Thanks to the contraction property there is, in fact, no ambiguity in the expression

rkT
i
ij . Had this not been the case, the Einstein notation would have been viable

and there would have been a need to reintroduce the summation sign to distinguish
between

P
iDrrkT

i
rj and rk

P
iDrT

i
rj : (8.101)

This contraction property completes the list of the key properties of the covariant
derivative. As we see, despite its apparent complexity, the covariant derivative is
simply a better alternative to the partial derivative.

The next section is devoted to a very important exercise: proving that the tensor
property by deriving the rule by which the covariant derivative transforms under a
change of variables.

8.7 A Proof of the Tensor Property

The marquee property of the covariant derivative is that it produces tensors out of
tensors. We have established this property in Sect. 8.6.1 by an elegant argument.
In this section, we will give a more direct proof based on establishing the rule by
which the covariant derivative transforms under a change of variables. We show this
property for three types of tensors: a covariant tensor Ti , a contravariant tensor T i ,
and a tensor of order two T ij . We do not give a proof for a tensor with an arbitrary
collection of indices, but it will be apparent to the reader that the proof can be
extended to those tensors, as well.
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8.7.1 A Direct Proof of the Tensor Property for rj Ti

Consider the covariant derivative rj Ti for a covariant tensor Ti . In the primed
coordinates Zi 0 , rj 0Ti 0 is given by

rj 0Ti 0 D @Ti 0

@Zj 0
� �k0

i 0j 0Tk0 : (8.102)

We have previously established how each of the terms in this expression transforms
under the change of coordinates. We repeat those relationships here

@Ti 0

@Zj 0
D @Ti

@Zj
J ii 0J

j

j 0 C J ii 0j 0Ti (8.103)

�k
0

i 0j 0 D �kij J
i
i 0J

j

j 0J
k0

k C J ki 0j 0J
k0

k (8.104)

Tk0 D TlJ
l
k0 (8.105)

The last two relationships help establish the transformation rule for the contraction
�k

0

i 0j 0Tk0

�k
0

i 0j 0Tk0 D
�
�kij J

i 0

i J
j 0

j J
k0

k C J ki 0j 0J
k0

k

�
TlJ

l
k0 D �kij J

i 0

i J
j 0

j Tk C J ki 0j 0Tk; (8.106)

where the justification of the second equality is left as an exercise. Thus, combining
both terms in equation (8.102), we find

rj 0Ti 0 D @Ti

@Zj
J ii 0J

j

j 0 C J ii 0j 0Ti � �kij J i
0

i J
j 0

j Tk � J ki 0j 0Tk: (8.107)

The terms with the second-order Jacobians cancel and we find

rj 0Ti 0 D
�
@Ti

@Zj
� �kij Tk

�
J ii 0J

j

j 0 ; (8.108)

which is precisely

rj 0Ti 0 D rj TiJ
i
i 0J

j

j 0 ; (8.109)

which shows that rj Ti is a tensor.

8.7.2 A Direct Proof of the Tensor Property for rj T i

The proof for the contravariant tensor T i will require an additional step. In
coordinates Zi 0 , rj 0T i

0

is
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rj 0T i
0 D @T i

0

@Zj 0
C �i

0

j 0k0T
k0

: (8.110)

Let us catalog how each of the terms transforms under the change of coordinates:

@T i
0

@Zj 0
D @T i

@Zj
J
j

j 0J
i 0

i C T iJ i
0

ij J
j

j 0 (8.111)

�i
0

j 0k0 D �ijkJ
i 0

i J
j

j 0J
k
k0 C J ij 0k0J

i 0

i (8.112)

T k
0 D T lJ k

0

l : (8.113)

From the last two relationships we find

�i
0

j 0k0T
k0 D

�
�ijkJ

i 0

i J
j

j 0J
k
k0 C J ij 0k0J

i 0

i

�
T lJ k

0

l D �ijkJ
i 0

i J
j

j 0T
k C J ij 0k0J

i 0

i J
k0

l T
l :

(8.114)
Combining all terms we have

rj 0T i
0 D @T i

@Zj
J
j

j 0J
i 0

i C T iJ i
0

ij J
j

j 0 C �ijkJ
i 0

i J
j

j 0T
k C J ij 0k0J

i 0

i J
k0

l T
l : (8.115)

The first and third terms combine to yields rj T
iJ

j

j 0J
i 0

i . However, this time, the
fact that the terms containing the second-order Jacobians cancel is not immediately
clear. Factoring out T i (this requires some index renaming), we find

rj T
i D rj T

iJ
j

j 0J
i 0

i C
�
J i

0

ij J
j

j 0 C J
j

j 0k0J
i 0

j J
k0

i

�
T i : (8.116)

To show that the expression in parentheses vanishes, start with the identity

J i
0

j J
j

j 0 D ıi
0

j 0 (8.117)

and differentiate with respect to Zi :

J i
0

j iJ
j

j 0 C J i
0

j J
j

j 0k0J
k0

i D 0: (8.118)

Thus, the nontensor term indeed drops out and we have

rj 0T i
0 D rj T

iZi 0

i Z
j

j 0 (8.119)

proving that rj T
i is indeed a tensor.
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8.7.3 A Direct Proof of the Tensor Property for rkT i
j

We now turn to the proof of the tensor property of the covariant derivative when
applied to a tensor T ij . In the coordinate system Zi 0 , rk0T i

0

j 0 reads

rk0T i
0

j 0 D @T i
0

j 0

@Zk0
C �i

0

k0m0T
m0

j 0 � �m0

j 0k0T
i 0

m0 ; (8.120)

Let us determine how each term transforms under the change of coordinates. For
@T i

0

j 0=@Z
k0

, we have

T i
0

j 0 D T ij J
i 0

i J
j

j 0 : (8.121)

By a combination of the product rule and the sum rule, we find

@T i
0

j 0

@Zk0
D @T ij

@Zk
J i

0

i J
j

j 0J
k
k0 C T ij J

i 0

ikJ
j

j 0J
k
k0 C T ij J

i 0

i J
j

j 0k0 : (8.122)

For the second term �i
0

k0m0T
m0

j 0 ; we have

�i
0

k0m0T
m0

j 0 D
�
�ikmJ

i 0

i J
k
k0J

m
m0 C J ik0m0J

i 0

i

�
T rj J

m0

r J
j

j 0 (8.123)

Multiplying out,

�i
0

k0m0T
m0

j 0 D �ikmT
m
j J

i 0

i J
k
k0J

s
j 0 C T rj J

i
k0m0J

i 0

i J
m0

r J
j

j 0 : (8.124)

Finally, for the last term �m
0

j 0k0T
i 0

m0 , we have

�m
0

j 0k0T
i 0

m0 D
�
�mjkJ

m0

m J
j

j 0J
k
k0 C Jmj 0k0J

m0

m

�
T is J

i 0

i 0 J
s
m0 : (8.125)

Expand the expression on the right hand side:

�m
0

j 0k0T
i 0

m0 D �mjkT
i
mJ

j

j 0J
k
k0J

i 0

r C T imJ
i 0

i J
m
j 0k0 : (8.126)

Combining the terms in equations (8.122), (8.124) and (8.126), we recognize
the terms from the proofs of the tensor property of ri Tj and ri T

j . Namely,
the leading terms from each equation combine to give precisely rkT

i
j J

i 0

i J
j

j 0J
k
k0 .

Among the remaining terms, the last term in equation (8.122) cancel the second
term in equation (8.126). This is analogous to the cancellation that took place in
the proof of the tensor property of ri Tj . The other two terms, T ij J

i 0

ikJ
j

j 0J
k
k0 from

equation (8.122) and T rj J
i
k0m0J

i 0

i J
m0

r J
j

j 0 from equation (8.124) combine to give
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T ij

�
J i

0

ikJ
k
k0 C J kk0m0J

i 0

k J
m0

i

�
J
j

j 0 ; (8.127)

where, as before, the last step required renaming some of the dummy indices and,
as before, we conclude that this term vanishes. We have therefore shown that

rk0T i
0

j 0 D rkT
i
j J

i 0

i J
j

j 0J
k
k0 ; (8.128)

which proves the tensor property of rkT
i
j :

8.8 The Riemann–Christoffel Tensor: A Preview

The Riemann–Christoffel tensor is a crucially important object in tensor calculus
and has an interesting history. The concepts that are captured so beautifully by
the Riemann–Christoffel tensor were conceived by the German mathematician
Bernhard Riemann (Fig. 8.2) and first described in his masterpiece [35]. Of course,
[35] predates tensor calculus by 35 years and does not use the tensor notation
championed in this book. In fact, Riemann felt that his ideas were best expressed in
words rather than in equations. As a result, [35] contains very few equations which
makes it a challenging read to say the least. If you can read German [36] or Russian
[37], you can find a detailed commentary—in tensor notation—by Hermann Weyl
in the 1919 edition of Riemann’s collected works.

The Riemann–Christoffel tensor arises in the analysis of the commutator rirj �
rjri . It is straightforward to show that the identity

rirj T
k � rjri T

k D
 
@�kjm

@Zi
� @�kim
@Zj

C �kin�
n
jm � �kjn�nim

!
T m (8.129)

Fig. 8.2 Bernhard Riemann
(1826–1866) was a pivotal
figure in the development of
modern geometry
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holds for any tensor T k . Thus the expression in parentheses is a tensor. (Demonstrate
this.) This tensor is known as the Riemann–Christoffel tensor Rk�mij

Rk�mij D @�kjm

@Zi
� @�kim
@Zj

C �kin�
n
jm � �kjn�nim: (8.130)

This object allows us to write the commutator rirj T
k � rjri T

k very compactly:

rirj T
k � rjri T

k D Rk�mij T m: (8.131)

Since the covariant derivatives commute in a Euclidean space, the Riemann–
Christoffel symbol vanishes

Rk�mij D 0: (8.132)

This equation is a powerful statement about the relationship among the entries of
the Christoffel symbol.

The Riemann–Christoffel tensor takes center stage in Part II, which is devoted
to the tensor description of curved surfaces. In Chap. 12, the profound significance
of the Riemann–Christoffel tensor becomes apparent. Furthermore, the Riemann–
Christoffel tensor plays a central role in Einstein’s general relativity in which the
ambient space is assumed to be non-Euclidean.

Exercise 145. Derive equation (8.129).

Exercise 146. Show that the Riemann–Christoffel tensor vanishes in a Euclidean
space by substituting equation (5.60) into equation (8.130). After an initial applica-
tion of the product rule, you will need equation (5.65) to re-express the derivative of
the contravariant basis.

8.9 A Particle Moving Along a Trajectory

This section presents a problem that is best solved by a developing its own mini-
calculus. A situation such as this arises quite frequently in practice. The problem
discussed here is usually presented in the context of parallelism along a curve in a
Riemann space.

Consider a particle moving in a Euclidean space, referred to a general coordinate
system Zi , along the trajectory � .t/ given by

Zi D Zi .t/ : (8.133)

Our goal is to calculate the components of the particle’s velocity, acceleration, and
jolt (rate of change in acceleration, also known as jerk and surge).
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In order to determine the components of the velocity vector, note that the position
vector R of the particle is given by the composition

R .t/ D R .Z .t// (8.134)

of the functions in equations (5.1) and (8.133). Differentiating equation (8.134) with
respect to t , yields

V .t/ D @R
@Zi

dZi

dt
; (8.135)

or

V .t/ D dZi

dt
Zi : (8.136)

Thus

V i .t/ D dZi .t/

dt
: (8.137)

We note that V .t/, as well as derivatives R.n/ .t/ of all orders of R .t/ with
respect to t , are invariants with respect to the change of coordinates Zi , since the
differentiation of R .t/ with respect to t does not even involve the coordinates Zi .

Exercise 147. Argue, on the basis of V being a tensor, that V i is tensor with respect
to the change of coordinates Zi .

Exercise 148. Show, by relating V i 0 to V i , that V i is a tensor with respect to the
change of coordinates Zi .

Exercise 149. Show that dV i=dt is not a tensor with respect to the change of
coordinates Zi .

To obtain the components Ai .t/ of acceleration A .t/, differentiate equa-
tion (8.136) once again with respect to t .

Exercise 150. Show that

A .t/ D
�
dV i

dt
C �ijkV

j V k

�
Zi ; (8.138)

thus

Ai .t/ D dV i

dt
C �ijkV

j V k: (8.139)

Exercise 151. Argue that the combination on the right-hand side of this equation is
a tensor. (Hint: A is an invariant).
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Equation (8.139) can be used as a motivation for the following definition of the
ı=ıt -derivative for a general variant T i defined along the trajectory � .t/:

ıT i

ıt
D dT i

dt
C V j�ijkT

k (8.140)

This definition can be extended to tensors of arbitrary indicial signature as follows:

ıT ij

ıt
D dT ij

dt
C V k�ikmT

m
j � V k�mkj T

i
m: (8.141)

The ı=ıt -derivative can also be referred to as the intrinsic derivative.

Exercise 152. Suppose that T i is the contravariant component of a vector field T
that is constant along the trajectory � . Show that ıT i=ıt D 0.

This exercise gives insight into the term parallelism. If a vector T travels
unchanged along the trajectory � then its components T i , with respect to the
changing basis Zi , are characterized by the equation ıT i=ıt D 0.

The ı=ıt -derivative has all of the desirable properties discussed in chapter. The
following exercises summarize these properties and invite you to use the newly
developed calculus to obtain the expression for components of the jolt J.

Exercise 153. Use the techniques developed in this chapter to show that the ı=ıt -
derivative satisfies the tensor property: that is, the ı=ıt -derivative produces tensors
out of tensors.

Exercise 154. Show that the ı=ıt -derivative coincides with the ordinary derivative
d=dt when applied to variants of order zero.

Exercise 155. Show that the ı=ıt -derivative coincides with the ordinary derivative
d=dt in affine coordinates.

Exercise 156. Show that the ı=ıt -derivative satisfies the sum and product rules.

Exercise 157. Show that the ı=ıt -derivative commutes with contraction.

Exercise 158. Suppose that T ij is defined in the entire Euclidean space. Show that
the trajectory restriction of T ij satisfies the chain rule

ıT ij

ıt
D @T ij .t; Z/

@t
C V krkT

i
j : (8.142)

Exercise 159. Show that the ı=ıt -derivative is metrinilic with respect to all metrics
associated with the coordinate system Ai .

Exercise 160. Rewrite equation (8.138) in the form
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A .t/ D ıV i

ıt
Zi : (8.143)

Apply the ı=ıt -derivative to both sides of this equation to obtain the following
expression for the jolt J:

J .t/ D ı2V i

ıt2
Zi : (8.144)

Thus

J i D ı2V i

ıt2
: (8.145)

8.10 Summary

In Chap. 6, we discussed the crucial importance of the tensor property in forming
geometrically meaningful invariant objects. However, we discovered that partial
differentiation of a tensor results in a variant that is not a tensor. This problem had
to be overcome in order to preserve the tensor calculus framework. The solution
presented in this chapter comes in the form of a new differential operator, the
covariant derivative.

The covariant derivative truly saves the day! It preserves just about all important
properties of the covariant derivative and provides the crucial benefit that it
produces tensors out tensors. The invention of the covariant derivative allowed
the development of tensor calculus to go forward. The definition developed in
this chapter will serve as a prototype for other differential operators that produce
tensors out of tensors, include the covariant differentiation on surfaces as well as
the invariant time derivative on moving surfaces.



Chapter 9
Determinants and the Levi-Civita Symbol

9.1 Preview

I have been looking forward to writing this chapter because we now get to use the
machinery we have been constructing. And to what great effect! Tensor calculus is a
fantastic language for determinants. The subject of determinants is beautiful and is
too often obfuscated by cumbersome notation. Even some of the most fundamental
properties of determinants can be difficult to follow without tensor notation. If
you ever found the proof that the determinant of a product equals the product of
determinants less than satisfying, you will find your satisfaction in this chapter.

You are well aware of the importance of determinants for solving linear systems,
computing volumes, changing variables in volume integrals, and evaluating vector
products and the curl of a vector field. In tensor calculus, determinants also play
a special role. There is a kind of symbiotic relationship between determinants
and our subject: the tensor notation makes working with determinants easy while
determinants give us the Levi-Civita symbols and help us approach integration from
an invariant point of view.

We will begin with the permutation symbols. The determinant of a second-
order system can then be defined in terms of the permutation symbols. We will
then demonstrate the key properties of the determinant, in tensor notation. We
will also introduce the delta symbols, which are nifty little objects of tremendous
utility. The ultimate highlight of the chapter is the Voss–Weyl formula, which
gives a convenient expression for the divergence, and therefore the Laplacian, that
bypasses the covariant derivative. Finally, we will present the volume element and
the Levi-Civita symbols, rounding out our collection of metrics.

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 9, © Springer Science+Business Media New York 2013
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9.2 The Permutation Symbols

Our discussion will initially be limited to three dimensions. Consider a
skew-symmetric system Aijk . Skew-symmetry refers to the property that an
exchange of any two indices changes the sign of the entry, whether it is the first two
indices

Aijk D �Ajik; (9.1)

the last two

Aijk D �Aikj ; (9.2)

or the first and the third

Aijk D �Akji : (9.3)

It immediately follows that if two of the indices have the same value. then the
corresponding entry in Aijk is zero. For instance, applying equation (9.1) to the
values of indices i D j D 1 and k D 2, yields

A112 D �A112 (9.4)

and it follows A112 D 0. We therefore conclude that the entries of Aijk are not zero
only for indices that form a permutation of numbers 1, 2, and 3. There are 6 entries

A123; A132; A213; A231; A312; A321; (9.5)

but only one degree of freedom: each entry is either A123 or �A123. These values are
determined by the skew-symmetry conditions (9.1), (9.2), and (9.3). Let ˛ denote
A123. Then

A123 D A312 D A231 D ˛ (9.6)

A213 D A321 D A132 D �˛: (9.7)

As you can see, there isn’t much variety in skew-symmetric systems: once the value
of A123 is selected, the remaining five nonzero entries follow. When ˛ D 1 the
system is denoted by eijk and is called a permutation symbol. Let us catalog its
values in a format that generalizes to higher (and lower) dimensions

eijk D
8<
:

1 if ijk is an even permutation of 1; 2; 3
�1 if ijk is an odd permutation of 1; 2; 3
0 otherwise

: (9.8)
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The same system can be denoted by the symbol eijk with upper indices. The
placement of the indices does not matter until we discuss transformation of
coordinates.

Exercise 161. Show that equation (9.3) follows from equations (9.1) and (9.2).

Exercise 162. Evaluate the contraction eijkeijk .

Exercise 163. Evaluate eijkekij .

Exercise 164. What are the entries of the system fijk D eijk C ejik?

Exercise 165. What are the entries of the system fijk D eijk C ekij ?

9.3 Determinants

Consider a system aij of order two. In this section we are not concerned with the
variant or tensor properties of aij . That is, it is unimportant—for now—according
to what rule aij was constructed. Consequently, the placement of indices does not
carry any tensorial information and we picked an object with one upper and one
lower index simply as a convenience. The determinant A of aij is defined as

A D eijka1i a
2
j a

3
k: (9.9)

You should convince yourself that this definition is consistent with the definition
given in linear algebra. It is certainly more compact, but the compactness comes
at the expense of including a multitude of terms that equal zero. The usual linear
algebra definition includes 3Š terms. Equation (9.9), on the other hand, has 33 terms,
all but 3Š of them zero. The surviving terms are the same as in the usual definition
and the permutation symbol eijk assures that they are counted with the correct sign.

Our first goal is to replace equation (9.9) with an equivalent one that conforms to
all the conventions of tensor calculus:

A D 1

3Š
eijkerst a

r
i a
s
j a

t
k: (9.10)

To show the equivalence of equations (9.9) and (9.10), note that switching the values
1 and 2 in the original definition results in the same value of opposite sign:

eijka2i a
1
j a

3
k D eijka1j a

2
i a
3
k D ejika1i a

2
j a

3
k D �eijka1i a2j a3k D �A: (9.11)

This observation can be applied to any pair of indices. In other words, the
eijkari a

s
j a

t
k is skew-symmetric in r , s, and t . As we have previously learned, a

third-order skew-symmetric system has a single degree of freedom, which can
be identified as the entry corresponding to r; s; t D 1; 2; 3. By definition, for
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these values of the indices, eijkari a
s
j a

t
k is precisely A. This observation can be

summarized as follows:

eijkari a
s
j a

t
k D Aerst : (9.12)

This is already better since we have succeeded in eliminating explicit indices.
What we need to do now is isolate A on the right-hand side. In Exercise 162 you
discovered that erst erst D 3Š. Therefore, contracting both sides of this equation
with erst , we arrive at equation (9.10). From this point forward, we will treat
equation (9.10) as the definition of the determinant.

Definitions similar to (9.9) can be given for systems aij with lower indices and
aij with upper indices:

A D eijka1ia2j a3k (9.13)

A D eijka
1ia2j a3k: (9.14)

and it can be similarly shown that

A D 1

3Š
eijkerst airajsakt (9.15)

A D 1

3Š
eijkerst a

irajsakt : (9.16)

Once again, the placement of the index is only a matter of convenience until the
transformation of A and underlying systems is analyzed. This will be discussed
later in this chapter.

Exercise 166. Explain each step in equation (9.11).

Exercise 167. Derive equations (9.15) and (9.16).

9.4 The Delta Systems

The fullest delta system ı
ijk
rst is defined as the tensor product of two permutation

symbols

ı
ijk
rst D eijkerst : (9.17)

Using this new object, the determinant A of aij can be written more compactly as

A D 1

3Š
ı
ijk
rst a

r
i a
s
j a

t
k: (9.18)
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Furthermore, by multiplying both sides with elmn, equation (9.12) leads to the
following expression

ı
ijk

lmna
r
i a
s
j a

t
k D Aırstlmn; (9.19)

which will prove important in showing the product property of the determinant.
This equation is quite appealing, even if it doesn’t say anything beyond what we
have already learned. Also, in a way, it may also be the most of all tensor identities
we have experienced so far. After all, it represents 27 identities, each containing 729
terms on the left-hand side.

The symbol ıijkrst is only one of a whole group of delta symbols ıir , ı
ij
rs and ıijkrst . Of

course, we have already encountered ıij , the Kronecker symbol. All delta systems,
including their generalizations to higher dimensions, can be captured by a single
definition: A particular entry of a delta system has value 1 when the upper and
lower are identical sets of distinct numbers related by an even permutation, �1 if
the sets are related by an odd permutation, and 0 otherwise. In other words, the
entry is 0 if any of the upper or any of the lower indices repeat, or if they do not
represent identical sets of numbers. You should be able to see that this definition
correctly describes the familiar objects ıij and ıijkrst , for which alternative definition
exist.

Thus, the value is 0 if any upper or lower indices are equal and, in the case of
distinct sets, if those sets are not the same. For example, ı1112 D 0 because the two
upper indices are the same and ı1213 D 0 because the upper and lower indices do not
consist of the same numbers. As a final example, ı1212 D 1 and ı2332 D �1 because, in
each case, the upper and lower indices form identical sets of distinct numbers. For
ı1212 , the upper indices are an even (zero, actually) permutation away from the lower
indices while for ı2332 the permutation is odd.

It is evident that delta systems are skew-symmetric in its upper and its lower
indices. The full delta system ı

ijk
rst can be expressed in terms of the Kronecker

symbol by the determinant

ı
ijk
rst D

ˇ̌̌
ˇ̌̌ ı

i
r ı

i
s ı

i
t

ı
j
r ı

j
s ı

j
t

ıkr ı
k
s ı

k
t

ˇ̌̌
ˇ̌̌ : (9.20)

The most important consequence of equation (9.20) is that ıijkrst is a tensor.
Consequently, according to equation (9.18), the determinant of a second-order
tensor with one covariant and one contravariant index is an invariant. The same
cannot be said of tensors with two covariant or two contravariant indices. The tensor
properties of determinants of such tensors are discussed later in this chapter.

Delta systems of different orders are related by the following contractions:

ıijrs D ı
ijk

rsk (9.21)

2ıir D ı
ij
rj : (9.22)
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Proofs of these relationships are left as exercises. Equations (9.21) and (9.22) show
that all delta systems are tensors. These relationships extend to higher dimensions.
For example, in four dimensions,

ı
ijk
rst D ı

ijkl

rst l (9.23)

2ıijrs D ı
ijk

rsk (9.24)

3ıij D ı
ij
rj : (9.25)

The symbol ıijrs can be expressed in term of the Kronecker symbol by the following
frequently used identity

ıijrs D ıir ı
j
s � ıjr ıis : (9.26)

The right-hand side of equation (9.26) can also be captured by a determinant:

ıijrs D
ˇ̌̌
ˇ ı

i
r ı

i
s

ı
j
r ı

j
s

ˇ̌̌
ˇ : (9.27)

Exercise 168. Justify equation (9.20).

Exercise 169. Explain why equation (9.20) shows that ıijkrst is a tensor.

Exercise 170. Explain why it follows that the determinant of a tensor with one
covariant and one contravariant index is an invariant.

Exercise 171. Justify equations (9.21) and (9.25).

Exercise 172. Justify equations (9.23) and (9.25) in four dimensions.

Exercise 173. Generalize equations (9.23) and (9.25) to N dimensions.

Exercise 174. Justify equation (9.26).

Exercise 175. Evaluate ıijkijk .

Exercise 176. Evaluate ıikjj ir .

Exercise 177. Evaluate ıijkrst ı
rst
lmn.

Exercise 178. Evaluate ıijkrst ı
rst
lmnı

lmn
ijk .

9.5 A Proof of the Multiplication Property of Determinants

The multiplication property of determinants reads

jMN j D jM j jN j : (9.28)

In words, the determinant of a product of two matrices equals the product of their
determinants. Three different proofs of this property can be found in linear algebra
textbooks including [13, 27, 44], and [22]. The tensor derivation is based on the
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approach in [13], and [22]. However, the proofs without the tensor notation lead
to cumbersome expressions, while the repeated use of the symbol

P
all permutations

makes those proofs difficult to follow.
The tensor notation translates the logic of permutations into simple algebraic

manipulations. Suppose that the double system cij is the “matrix product” of aij
and bjk :

cij D aikb
k
j : (9.29)

Then its determinant C is given by

C D 1

3Š
ı
ijk
rst c

r
i c
s
j c

t
k: (9.30)

Substitute equation (9.29) in (9.30):

C D 1

3Š
ı
ijk
rst a

r
l b
l
i a
s
mb

m
j a

t
nb

n
k : (9.31)

Since, by equation (9.19), ıijkrst a
r
l a
s
ma

t
n D Aılmnijk , we have

C D 1

3Š
Aı

ijk

lmnb
l
i b
m
j b

n
k ; (9.32)

which gives

C D AB: (9.33)

The entire derivation can be combined in a single line

C D 1

3Š
ı
ijk
rst c

r
i c
s
j c

t
k D 1

3Š
ı
ijk
rst a

r
l b
l
i a
s
mb

m
j a

t
nb

n
k D 1

3Š
Aı

ijk

lmnb
l
i b
m
j b

n
k D AB: (9.34)

This proof is a demonstration of the effectiveness of the tensor notation.

Exercise 179. Show C D AB property for systems cik , aij , and bjk related by
cik D aij bjk .

9.6 Determinant Cofactors

If the term ari is removed from the product ıijkrst a
r
i a
s
j a

t
k the result is a second-order

system of tremendous utility. Define the cofactor Air by

Air D 1

2Š
ı
ijk
rst a

s
j a

t
k: (9.35)
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For a tensor ari , the cofactor Air is also a tensor. The cofactor Air has two remarkable
properties. First, it represents the partial derivative @A=@air of the determinant A
with respect to its entries. Second, the product A�1Air is the matrix inverse of air .

To prove the first relationship

@A

@ari
D Air ; (9.36)

compute the derivative of A with respect to au
l , since the indices i and r are already

used in equation (9.35). We have

@A

@au
l

D 1

3Š
ı
ijk
rst

@
�
ari a

s
j a

t
k

�
@au

l

: (9.37)

By the product rule,

@A

@au
l

D 1

3Š
ı
ijk
rst

�
@ari
@au

l

asj a
t
k C ari

@asj

@au
l

atk C ari a
s
j

@atk
@au

l

�
: (9.38)

Each of the partial derivatives in (9.38) can be captured by the Kronecker symbol.
For example,

@ari
@au

l

D ıruı
l
i : (9.39)

Therefore

@A

@au
l

D 1

3Š
ı
ijk
rst

�
ıruı

l
i a
s
j a

t
k C ısuı

l
j a

r
i a
t
k C ıtuı

l
ka

r
i a
s
j

�
: (9.40)

Multiply out this expression and use the index-renaming property of the Kronecker
symbol:

@A

@au
l

D 1

3Š

�
ı
ljk
ust a

s
j a

t
k C ıilkrut a

r
i a
t
k C ıijlrsua

r
i a
s
j

�
: (9.41)

The terms in parentheses are each equivalent to 2Alu. Therefore

@A

@au
l

D Alu; (9.42)

which completes the proof.
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We next show that the cofactor Air is proportional to the matrix inverse of the
system ari :

Aira
r
m D Aıim: (9.43)

Denote the product Aira
r
m by Di

m:

Di
m D Aira

r
m D 1

2Š
ı
ijk
rst a

r
ma

s
j a

t
k: (9.44)

We first show that Di
m D 0 when i ¤ m. For example, consider D1

2

D1
2 D 1

2Š
ı
1jk
rst a

r
2a
s
j a

t
k: (9.45)

Out of the 35 terms in the sum on the right-hand side, only two (j; k D 2; 3 and
j; k D 3; 2) correspond to nonzero entries of ı1jkrst :

D1
2 D 1

2Š

�
ı123rst a

r
2a
s
2a
t
3 C ı132rst a

r
2a
s
3a
t
2

	
: (9.46)

However, each of these terms is zero because the value 2 appears twice as the lower
index. Therefore, Di

m D 0 for i ¤ m.
Next consider the case i D m. For example, consider D1

1 :

D1
1 D 1

2Š
ı
1jk
rst a

r
1a
s
j a

t
k: (9.47)

The same two terms correspond not nonvanishing values of ı1jkrst :

D1
2 D 1

2Š

�
ı123rst a

r
1a
s
2a
t
3 C ı132rst a

r
2a
s
3a
t
1

	
: (9.48)

This time, each equals A and we have therefore shown that Di
m D A for i D m.

This completes the proof of the fact that Air is A times the inverse of ari .

Exercise 180. Explain equation (9.39).

Exercise 181. Show that each term in equation (9.41) equals 2Au
l .

Exercise 182. Generalize the proof of equation (9.36) to arbitrary dimension.

Exercise 183. Derive similar expressions for determinants of tensors aij and aij .

Exercise 184. Explain why each term vanishes on the right-hand side of equa-
tion (9.46).

Exercise 185. Explain why each term in parentheses in equation (9.48) equals A.
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Exercise 186. Extend the subject of cofactors to systems with two lower indices
(denote the cofactor byAir ) and systems with two upper indices (denote the cofactor
by Air ).

9.7 The Object Z and the Volume Element

Let Z denote the determinant of the covariant metric tensor Zij :

Z D jZ��j : (9.49)

We have used the letter Z to denote several objects: the independent variable Zi ,
the bases Zi and Zi , the metric tensorsZij andZij , and now the determinant ofZij .
However, there is no confusion since the index signatures and the font make these
symbols different. Interestingly, some texts use the same letter to denote the position
vector R, the Jacobian matrices J i

i 0
and J i

0

i and the upcoming Levi-Civita symbols
"ijk and "ijk . The combination of index signature and font would still enable us to
distinguish among all objects Z, Zi

i 0
, Zi 0

i , Zijk , Zijk , and allow us to label all of
the most fundamental objects by the same letter. In this book, however, we limit the
use of the letter Z and this is our last use for Z. Finally, note the use of dots �� in
equation (9.49) to indicate the covariant metric tensor. We prefer to use this notation
to the alternative Z D ˇ̌

Zij
ˇ̌
, because in the latter, the indices i and j are neither

live nor contracted and we do not employ indices in any other way.
The variant Z is not a tensor. However it does transform according to a very

interesting rule that makes it a relative tensor. Relative tensors are discussed in
Sect. 9.9. Consider an alternative coordinate system Zi 0and the corresponding
variant Z0

Z0 D jZ�0�0 j : (9.50)

Our goal is to establish the relationship between Z0 and Z. Let us remind ourselves
of the relationship between Zi 0j 0 and Zij :

Zi 0j 0 D Zij J
i
i 0J

j

j 0 : (9.51)

Let the letter J denote the determinant of the Jacobian J i
i 0

J D ˇ̌
J ��0
ˇ̌
: (9.52)

Since J i
i 0

and J i
0

i are the inverses of each other, the determinant of J i
0

i is J�1:

J�1 D
ˇ̌̌
J �0�
ˇ̌̌
: (9.53)
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From equation (9.51) we conclude, by the multiplication property of determinants,
that

Z0 D ZJ 2: (9.54)

This equation confirms that Z is not a tensor. A variant that changes according to
this rule is called a relative tensor of weight 2 (because of the 2 in the exponent).
Despite not being a tensor, the variant Z is an object of utmost importance as will
become evident in the remainder of this chapter.

The quantity
p
Z is called the volume element. In the two-dimensional plane,

it may be referred to as the area element. On a line, it may be called the length
element or the line element. When the dimension of the space is not specified, we say
volume element. The quantity Z is the determinant of a positive definite matrix and
is therefore positive. More accurately, it is the determinant of a positive semidefinite
matrix and is therefore nonnegative. It may vanish at special points, such as the
origin of a polar coordinate system. In either case, the taking of the square root is
justified.

You may be familiar with the term volume element from multivariable calculus,
where it is defined with a reference to a Cartesian coordinate system. According
to the multivariable calculus definition, the volume element in coordinates Zi 0 is
defined as the determinant J of the Jacobian matrix J i

i 0
, where Zi are Cartesian

coordinates. The tensor definition has the advantage that it is given in absolute terms
without a reference to a particular secondary coordinate system.

The two definitions lead to nearly identical objects that may differ by a sign.
Consider a Cartesian coordinate system Zi and an alternative coordinate system
Zi 0 . Then, according to equation (9.54), the object Z0 in the primed coordinates is
given by

Z0 D J 2; (9.55)

since Z D 1 in Cartesian coordinates. This is clear from equation (5.37) and is
catalogued in equation (9.57). Taking square roots of both sides, we find

p
Z0 D Absolute value .J / : (9.56)

Therefore, the volume element
p
Z0 and the determinant J of the Jacobian coincide

when J is positive and are of opposite signs when J is negative. In other words,
the volume element

p
Z0 agrees with the Jacobian if the coordinate system Zi 0 is

positively oriented with respect to the Cartesian coordinates Zi . The orientation of
a coordinate system was defined in Sect. 4.10.

We now catalogue the values of the volume element for the most common
coordinates. In Cartesian coordinates,

p
Z D 1: (9.57)
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In polar and cylindrical coordinates,

p
Z D r: (9.58)

In spherical coordinates,

p
Z D r sin 	: (9.59)

Exercise 187. Confirm equations (9.57), (9.58), and (9.59).

9.8 The Voss–Weyl Formula

The magical Voss–Weyl formula for the calculation of divergence ri T
i of a tensor

field T i illustrates another use of the volume element
p
Z:

ri T
i D 1p

Z

@

@Zi

�p
ZT i

�
: (9.60)

The Voss–Weyl formula expresses the divergence of a contravariant tensor field
without a reference to the Christoffel symbols. It is therefore an interesting
example of an invariant expression constructed in a nontensor way. Furthermore,
it is a formula that has an attractive structure that is often recognized in various
expressions.

To confirm the Voss–Weyl formula, first apply the product rule:

1p
Z

@

@Zi

�p
ZT i

�
D @T i

@Zi
C T ip

Z

@
p
Z

@Zi
: (9.61)

Thus, we are therefore faced with the intriguing task of calculating the partial
derivative @

p
Z=@Zi . The variant Z depends on the coordinates Zk via the entries

of the metric tensor Zij . Therefore, @Z=@Zk can be found by the chain rule

@Z

@Zk
D @Z

@Zij

@Zij

@Zk
: (9.62)

Recall equation (5.68) which gives the partial derivative @Zij =@Zk :

@Zij

@Zk
D �i;jk C �j;ik (5.68)

According to Exercise 186, the derivative of Z with respect to the entries of the
metric tensor Zij is given by
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@Z

@Zij
D ZZij : (9.63)

Putting these equations together, yields

@Z

@Zk
D ZZij

�
�i;jk C �j;ik

	
; (9.64)

or, equivalently,

@Z

@Zk
D 2Z�iik: (9.65)

The partial derivative @
p
Z=@Zk of the volume element

p
Z is now computed by a

simple application of the chain rule

@
p
Z

@Zk
D 1

2
p
Z

@Z

@Zk
: (9.66)

The final expression reads

@
p
Z

@Zk
D p

Z�iik: (9.67)

To complete the derivation of the Voss–Weyl formula, substitute equation (9.67)
into (9.61)

1p
Z

@

@Zi

�p
ZT i

�
D @T i

@Zi
C T i�kki ; (9.68)

and note that the expression on the right-hand side coincides with the definition of
ri T

i .
The Voss–Weyl formula provides the most effective way to calculate the Lapla-

cian rir iF of an invariant field F . Since the Laplacian rir iF is the divergence
of T i D r iF and contravariant gradient r iF is given by

r iF D Zij @F

@Zj
; (9.69)

the Voss–Weyl formula yields

rir iF D 1p
Z

@

@Zi

�p
ZZij @F

@Zj

�
: (9.70)

Exercise 188. Use the Voss–Weyl formula to derive the Laplacian in spherical
coordinates
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rir iF D 1

r2
@

@r

�
r2
@F

@r

�
C 1

r2 sin 	

@

@	

�
sin 	

@F

@	

�
C 1

r2 sin2 	

@2F

@
2
: (9.71)

This expression is equivalent to equation (8.39) which was obtained in a much
more laborious fashion with the help of the Christoffel symbols. It is common
not to expand any of the terms in this expression and to present the Laplacian
in this appealing form. When looking at this expression, one can see upon it the
characteristic imprint of the Voss–Weyl formula.

Exercise 189. Use the Voss–Weyl formula to derive the expression (8.37) for the
Laplacian in cylindrical coordinates.

9.9 Relative Tensors

The object Z is an example of a variant that, while not quite a tensor, transforms
according to a very interesting rule given in equation (9.54). The transformation
rule is nearly that of an invariant except for the additional factor of J 2. There are
other important objects that are nearly tensors in this sense. A variant T ij is a called
relative tensor of weight M if it changes according to the rule

T i
0

j 0 D JMT ij J
i 0

i J
j

j 0 : (9.72)

Thus, tensors are special cases of relative tensors corresponding to M D 0. To
make the distinction clearer, tensors are sometimes referred to as absolute tensors.
A relative tensor of order zero of weight M is called a relative invariant of weight
M . As illustrated by the following exercises, relative tensors satisfy all of the
appropriately adjusted properties of regular tensors.

Exercise 190. Show that if Sijk is a relative tensor of weightM and T rst is a relative

tensor of weightN , then SijkT
rs
t is a relative tensor of weightM CN . In particular,

if M D �N , then SijkT
rs
t is a tensor.

Exercise 191. Show that the result of contraction for a relative tensor of weight M
is also a relative tensor of weight M .

Exercise 192. Conclude that ıijkrst is an absolute tensor on the basis of equa-
tion (9.17).

We now turn to the most interesting relative tensors eijk and eijk . Let us first look
at the symbol eijk and see what we get when we transform it as if it were a covariant
tensor:

eijkJ
i
i 0J

j

j 0J
k
k0 : (9.73)
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By equation analogous to (9.12), this expression equals Jei 0j 0k0 :

eijkJ
i
i 0J

j

j 0J
k
k0 D Jei 0j 0k0 : (9.74)

Therefore,

ei 0j 0k0 D J�1eijkJ ii 0J
j

j 0J
k
k0 (9.75)

which leads to the conclusion that eijk is a relative covariant tensor of weight �1.
What about eijk? Interestingly, since the entries of eijk are identical to those of

eijk , it can be viewed as the same kind of relative tensor as eijk . On the other hand,
let us try to interpret eijk as some kind of contravariant tensor. Let us therefore
transform eijk contravariantly:

eijkJ i
0

i J
j 0

j J
k0

k : (9.76)

According to equation (9.12), we find

eijkJ i
0

i J
j 0

j J
k0

k D J�1ei 0j 0k0

; (9.77)

or

ei
0j 0k0 D JeijkJ i

0

i J
j 0

j J
k0

k ; (9.78)

and we can therefore interpret eijk as a relative contravariant tensor of weight 1.
These properties of eijk and eijk can help us determine the similar properties

for determinants of second-order tensors. Suppose that aij is an absolute covariant
tensor. Its determinant A is given by equation (9.15) and is therefore a relative
invariant or weight 2. Similarly, the determinant A of an absolute contravariant
tensor is a relative invariant of weight �2. Finally, as we have seen previously, the
determinant of an absolute tensor with one covariant and one contravariant index is
also an absolute tensor.

Exercise 193. Show that the determinant of a relative covariant tensor aij of weight
M is a relative invariant of weight 2C 3M and that in n dimensions the expression
generalizes to 2C nM .

Exercise 194. Show that the volume element
p
Z is a relative invariant of weight

1 with respect to orientation-preserving coordinate changes.

We now have all the machinery to introduce the Levi-Civita tensors—this
author’s favorite objects.
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9.10 The Levi-Civita Symbols

Our goal is to adjust the relative tensors eijk and eijk to produce absolute tensors.
This can be accomplished by scaling these systems by the volume element

p
Z

which is a relative invariant (with respect to orientation-preserving coordinate
changes) of weight 1. The result is the Levi-Civita symbols "ijk and "ijk :

"ijk D eijkp
Z

(9.79)

"ijk D p
Zeijk: (9.80)

The Levi-Civita symbols are absolute tensors with respect to orientation-preserving
coordinate changes. As absolute tensors, the Levi-Civita symbols can be used
effectively in defining the curl operator and the cross product of vectors. The Levi-
Civita symbols are considered to be metrics—a special group of objects derived
from the position vector R. The metrics now include the covariant and contravariant
bases, the metric tensor, and now the volume element and the Levi-Civita symbols.
The introduction of the Levi-Civita symbols completes the list of metrics.

In Chap. 8, we discovered the metrinilic property of the covariant derivative.
That is the fact that each metric vanishes under the covariant derivative. Does this
property extend to the Levi-Civita symbols? The answer is yes and proving this
property is the subject of the next section.

Exercise 195. Confirm that the Levi-Civita symbols are absolute tensors with
respect to orientation preserving coordinate changes.

Exercise 196. Show that

ı
ijk
rst D "ijk"rst ; (9.81)

which offers yet another proof that ıijkrst is an absolute tensor.

Before we discuss the application of the covariant derivative to the Levi-Civita
symbols, we point out an important notational point. Note that the symbol "ijk
admits two interpretations. On the one hand, it is defined by an explicit expression
in equation (9.80). On the other hand, it can be interpreted as the result of lowering
each index of the contravariant Levi-Civita symbol "rst :

"ijk D "rstZirZjsZkt : (9.82)

Do these two distinct interpretation result in the same object? Fortunately, they do.
Let us take the expression "rstZirZjsZkt as the starting point and substitute the
definition of the Levi-Civita symbol "rst :

"rstZirZjsZkt D erstZirZjsZktp
Z

(9.83)
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By equation (9.12), the expression in the numerator equals Zeijk , thus

"rstZirZjsZkt D Zeijkp
Z

D p
Zeijk: (9.84)

We have therefore arrived at the definition of "ijk showing that the two interpreta-
tions are equivalent.

Exercise 197. Show that the permutation eijk and eijk are not related by index
juggling.

9.11 The Metrinilic Property with Respect
to the Levi-Civita Symbol

Does the metrinilic property extend to our newest metrics, the Levi-Civita symbols?
That is, do the Levi-Civita symbols vanish under the covariant derivative? The
answer is yes and this section is devoted to proving this important property—the
long way. Of course, there is the standard short argument that relies on the Euclidean
nature of our space. Simply observe that ri "rst is a tensor that vanishes in Cartesian
coordinates. Therefore, it vanishes in all coordinates, Q.E.D.

The long way is a valuable technical exercise. It entails a direct application of the
covariant derivative to the definition of the Levi-Civita symbol. It has the important
advantage that it will continue to work on curved surfaces.

We first evaluate ri erst , that is, the covariant derivative applied to the permuta-
tion symbol. Note that, despite the fact that the entries of erst are spatial constants,
there is no reason to expect that the covariant derivative of erst vanishes. As we
discussed in Chap. 8, this property of the partial derivative does not extend to the
covariant derivative (nor should it).

Introduce the symbol, Tirst :

Tirst D ri erst : (9.85)

Since their partial derivative @erst =@Zi vanishes, Tirst consists of the following three
terms

Tirst D ��mir emst � �mis ermt � �mit ersm: (9.86)

From this expression we can conclude that Tirst is skew-symmetric in the indices
rst . Swapping r and s, we find

Tisrt D ri esrt D �ri erst D �Tirst ; (9.87)
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confirming the skew-symmetry. Therefore, we need to consider only Ti123 which is
given by

Ti123 D ��mi1em23 � �mi2e1m3 � �mi3e12m: (9.88)

In each contraction, only one term survives:

Ti123 D ��1i1e123 � �2i2e123 � �3i3e123: (9.89)

Factor out e123 and summarize this identity using a contraction:

Ti123 D ��mmie123: (9.90)

This argument can be generalized for other permutations of 123, yielding

Tirst D ��mmierst : (9.91)

The metrinilic property of "rst can now be demonstrated. By the product rule,

ri "rst D ri

�p
Zerst

�
D @

p
Z

@Zi
erst C p

Zri erst : (9.92)

We have calculated the partial derivative @
p
Z=@Zi previously and the result be

found in equation (9.67). Combining equations (9.67) and (9.91), we find

ri "rst D �mmierst � �mmierst D 0; (9.93)

and the proof is complete.

Exercise 198. Show that the metrinilic property applies to the contravariant Levi-
Civita symbol "rst .

Exercise 199. Use the metrinilic property of the Levi-Civita symbols to show the
same for the delta systems:

rmı
ijk
rst ; rmı

ij
rs; rmı

i
r D 0: (9.94)

9.12 The Cross Product

The Levi-Civita symbols, being tensors, are key to the analytical definitions of the
cross product and the curl. The cross product W i of two vectors U i and V i is
defined by

W i D "ijkUj Vk: (9.95)
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Since all the elements on the right-hand side of (9.95) are tensors, W i is a tensor as
well. To form an invariant, contract W i with the covariant basis Zi to form W D
W iZi . Then

W D "ijkUj VkZi : (9.96)

In dyadic notation, the relationship among U, V, and W is denoted by

W D U � V: (9.97)

We are now thoroughly enjoying the power of tensor calculus! We wrote down
equation (9.95) with great ease, confident that we produced the right equation.
Although this definition is algebraic, we are assured of its geometric meaningful-
ness. Why?—because the result is a tensor! Furthermore, equation (9.95) gives us a
whole lot more, including an explicit algorithm for constructing the gradient in any
coordinate system. (The definition given in most calculus books certainly does not
give us that.)

Furthermore, the definition (9.95) gives us an expression that can be further
manipulated. For example, let us evaluate the divergence riW

i of the cross product.
By the product rule and metrinilic property, the Levi-Civita symbol "ijk passes
through the covariant derivative ri

riW
i D "ijkri

�
UjVk

	
: (9.98)

Subsequently, by the product rule,

riW
i D "ijkriUj Vk C "ijkUjriVk: (9.99)

This expression does not admit any further analysis and constitutes the final answer.
The combination "ijkriUj is known as the curl of Uj and is the subject of the
following section.

Just as easily, all the other fundamental properties follow from the defini-
tion (9.95). First, let us show the antisymmetric property of the cross product. It
follows instantly from the skew-symmetric property of the Levi-Civita symbol. Let

W i
1 D "ijkUj Vk (9.100a)

W i
2 D "ijkVjUk: (9.100b)

Then, by a combination of steps, that we may call switch-rename-reshuffle, we have

W i
1 D "ijkUj Vk D �"ikjUj Vk D �"ijkUkVj D �"ijkVjUk D �W i

2 , Q.E.D.
(9.101)

In dyadic notation

U � V D �V � U: (9.102)
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The antisymmetric property can be expressed by the attractive equation (9.102)
in dyadic notation. It may appear as a disadvantage of the tensor notation that there
is no such expression in tensor notation. In fact, in tensor notation there is not even
a symbol for the cross product. However, we see this as an advantage rather than as
a disadvantage. On the one hand, we save yet another symbol that helps prevent our
framework from being overwhelmed by the multitude of operators (not that we are
in any danger) and we are also able to view the anti-symmetry of the cross product
as a near triviality, given the skew-symmetry of the Levi-Civita symbol, rather than
as a stand-alone property of a novel operator.

The cross product of U i and V j is orthogonal to each of these vectors. Indeed,
dotting W i and V i , we find

W iVi D "ijkUiUj Vk D 0; (9.103)

which also follows from the skew-symmetric property of the Levi-Civita symbol
and can be shown by a switch-rename-reshuffle. This is a fundamental and familiar
property of the cross product. We have obtained it as a consequence of the algebraic
definition (9.95). Historically, it arose geometrically, where orthogonality was the
key element of the definition. This is an instance, where tensor calculus inverts the
traditional perspective and gives preference to the algebraic viewpoint.

Exercise 200. Show that "ijkUiUj Vk D 0 by a rename-switch-reshuffle.

Next, let us calculate the length of the vector W i . It is an excellent technical
exercise for working with Levi-Civita symbols. The length squared of the vector
W i is given by WiW

i :

WiW
i D "ijkU

j V k"irsUrVs: (9.104)

Combine the two Levi-Civita symbols into a single ı-symbol:

WiW
i D ıirsijkU

j V kUrVs: (9.105)

By equation (9.21),

WiW
i D ırsjkU

j V kUrVs: (9.106)

and by equation (9.26),

WiW
i D

�
ırj ı

s
k � ısj ırk

�
U jV kUrVs: (9.107)

Continuing, we find

WiW
i D U jV kUjVk � U jV kUkVj : (9.108)
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Rewriting this equation in a more attractive form yields

WiW
i D UjU

jVkV
k � UjV j VkU

k: (9.109)

This is the final answer. In dyadic form, it reads

jWj2 D jUj2 jVj2 � .U � V/2 : (9.110)

Exercise 201. Show that jWj D jUj jVj sin˛ where sin˛ is the angle between U
and V.

Exercise 202. As practice with working with Levi-Civita symbols, derive the
expression for the cross product of three vectors. You should obtain an expression
with a dyadic form that reads

.U � V/ � W D .U � W/V � .V � W/U: (9.111)

Conclude that the cross product is not associative.

Exercise 203. Show that the indices can be rotated in the expression for W to yield

W D "ijkUiVjZk: (9.112)

Exercise 204. Show that

U � .V � W/ D .U � V/ � W: (9.113)

Exercise 205. Show that in Cartesian coordinates, the cross product is given by

W D
ˇ̌
ˇ̌̌
ˇ

i j k
U 1 U 2 U 3

V 1 V 2 V 3

ˇ̌
ˇ̌̌
ˇ (9.114)

Exercise 206. Show that in cylindrical coordinates, the cross product is given by

W D
ˇ̌̌
ˇ̌
ˇ
rZ1 rZ2 rZ3

U 1 U 2 U 3

V 1 V 2 V 3

ˇ̌̌
ˇ̌
ˇ . (9.115)

Exercise 207. Derive the expression for the cross product in spherical coordinates.
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9.13 The Curl

The curl is an invariant differential operator which can be defined with the help
of the Levi-Civita symbol. The term curl was coined by J. Clerk Maxwell in his
celebrated Treatise on Electricity and Magnetism [30]. Given the tensor field Uk , its
curl V i is defined as

V i D "ijkrj Uk: (9.116)

In dyadic notation, the curl is denoted by a new symbol r�:

V D r � U: (9.117)

As an illustration, let us analyze the curl of a curl of a vector field. In dyadic
notation, let V D r � r � U. Then

Vr D "rsirs
�
"ijkrj Uk

	
: (9.118)

By the metrinilic property of the Levi-Civita symbol,

Vr D "rsi "
ijkrsrj Uk: (9.119)

Combine the Levi-Civita symbols in to a single ı-symbol

Vr D ı
ijk
rsirsrj Uk; (9.120)

and cycle the contravariant indices of the ı-symbol to put the index i in the last
position:

Vr D ı
jki
rsi rsrj Uk: (9.121)

The rest of the analysis parallels that of the example in preceding section. By
equations (9.21) and (9.26) we have

Vr D ıjr ı
k
s rsrj Uk � ıkr ıjs rsrj Uk; (9.122)

which yields the near-final expression

Vr D rkrrUk � rsrsUr : (9.123)

Renaming indices and switching the order of the covariant derivatives, we arrive at
the final identity

Vi D rirj U
j � rjrj Ui : (9.124)
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In dyadic notation, this identity reads

r � r � U D r .r � U/ � r � rU: (9.125)

Exercise 208. Analyze the curl applied to a cross product. Show that W D r �
.U � V/ is given by

W i D �rj U
j V i C rj U

i V j � U jrj V
i C U irj V

j : (9.126)

Although there is no good way to do so express this relationship in dyadic notation.

Exercise 209. Show that divergence of curl vanishes.

Exercise 210. Show that curl of a gradient vanishes.

9.14 Generalization to Other Dimensions

The ideas presented so far in this chapter naturally generalize to any number of
dimensions. We spell out the generalization to two dimensions and outline the
generalization to higher dimensions.

Suppose that all indices can now have values 1 or 2. The permutation symbols
eij and eij are defined analogously to equation (9.8) and therefore have the values
captured by the following matrix

eij ; e
ij D

�
0 1

�1 0
�
: (9.127)

The full delta system ı
ij
rs is defined by

ıijrs D eij ers (9.128)

and satisfies the properties

ıijrs D ıir ı
j
s � ıjr ıis (9.129)
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and

ıij D ıirjr ; (9.130)

where the Kronecker symbol ıij has the usual definition.
The determinant A of a 92 � 2 system aij is given by

A D 1

2
ıijrsa

r
i a
s
j ; (9.131)

and similarly satisfies the product property.
The definition (9.49) of the object Z is valid in all dimensions. Its square rootp
Z is the volume element which, in two dimensions, could be referred to as the

area element. However, we will stick to the term volume element and reserve the
term area element for embedded surfaces in Part II.

The Levi-Civita symbols "ij and "ij are defined according to the formulas

"ij D p
Zeij (9.132)

"ij D eijp
Z
: (9.133)

The cross product involves a single tensor U i :

Vi D "ij U
j ; (9.134)

and produces a vector that is orthogonal to U j , since

ViU
i D "ij U

iU j D 0: (9.135)

Exercise 211. Explain why "ij U iU j D 0 in equation (9.135).

Exercise 212. Show that the length of the vector V i equals the length of the
vector U i .

The divergence and the Laplacian operators are defined identically in all
dimensions, and the Voss–Weyl formula is universal, as well. The curl of a vector
field U i is the scalar field V given by

V D "ijr iU j : (9.136)

Next, let us discuss generalization to a general n-dimensional case. The permu-
tation symbols ei1���in and ei1���in have n indices and yield the value 1 if all indices
are different and form an even permutation, �1 if odd permutation, and 0 otherwise.
The full delta system ı

i1���in
j1���jn is defined by

ı
i1���in
j1���jn D ei1���inej1���jn ; (9.137)
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and can be expressed by the determinant

ı
i1���in
j1���jn D

ˇ̌̌
ˇ̌̌
ˇ
ı
i1
j1
ı
i1
jn

ı
in
j1
ı
in
jn

ˇ̌̌
ˇ̌̌
ˇ
: (9.138)

The delta systems are related by contractions and a coefficient that equals the
number of missing indices:

ı
i1���ik�1

j1���jk�1
D .n � k/ ıi1���ik�1ik

j1���jk�1ik
(note the contraction on ik). (9.139)

In particular,

ı
i1���ik
i1���ik D kŠ (9.140)

The determinant A of an n � n matrix aij is given by the equation

A D 1

nŠ
ı
i1���in
j1���jna

j1
i1

� � � ajnin :

The cross product involves n � 1 vectors U i
.1/
; � � �U i

.n�1/

Vi D "ij1���jn�1U
j1
.1/
; � � �U jn�1

.n�1/ (9.141)

and the curl is not defined.

9.15 Summary

This chapter offered us a welcome opportunity to use the tensor framework
developed over the preceding chapters. The object of our study here was the
determinant. In the course of our discussion, we introduced the ı-symbols, which
proved to be tensors of tremendous utility. We proceeded to define the determinant
in tensor notation. The tensor notation proved to be a natural turn to expresses the
determinant and enabled us to offer simple proofs of the key properties, including
the one-line proof of the product property jABj D jAj jBj in equation (9.34).

The Levi-Civita symbols "ijk and "ijk were the stars of the second half of this
chapter. Along with the volume element

p
Z, the Levi-Civita symbols complete the

list of metrics. We demonstrated that the Levi-Civita symbols are tensors and that
the metrinilic property applies to them. Finally, we used the Levi-Civita symbols to
introduce the vector product and the curl.
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Chapter 10
The Tensor Description of Embedded Surfaces

10.1 Preview

We have finally arrived at the subject of surfaces. This topic is extraordinarily rich
and it lets tensor calculus shine at its brightest. We will focus on two-dimensional
surfaces in three-dimensional Euclidean spaces. The Euclidean space in which the
surface is embedded is called the ambient space. The analysis presented in this
chapter is easily extended to hypersurfaces of any dimension. A hypersurface is
a differentiable (n � 1)-dimensional subspace of an n-dimensional space. That
is, a hypersurface is characterized by a codimension of 1, codimension being the
difference between the dimensions of the ambient and embedded spaces. Curves,
the subject of Chap. 13, embedded in the three-dimensional Euclidean space have
codimension two.

A useful term that applies to subspaces of any codimension is manifold. The
meaning of this term, originally introduced by Henri Poincaré in Analysis Situs,
has undergone an evolution in recent decades. Its currently accepted definition is
given in the context of topology. We adopt a narrower meaning that is closer to
Poincaré’s original definition: a manifold is a subspace of the Euclidean space
that can be parameterized by smooth functions defined on a region of R

m, as in
equations (10.1a)–(10.1c). For m D 1, the manifold is a curve. For m D n � 1, the
manifold is a hypersurface.

This chapter focuses on the tangent and normal spaces that exist at all points on
the surface where the surface is sufficiently smooth. For a hypersurface, the tangent
space is (n � 1)-dimensional and is spanned by a set of n � 1 vectors that form
surface covariant basis. The normal space is one-dimensional and is spanned by a
single vector N called the normal.

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 10, © Springer Science+Business Media New York 2013
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10.2 Parametric Description of Surfaces

There are various ways to specify a surface. We describe surfaces parametrically.
That is, we choose two variables S1 and S2 (collectively, S˛) and let each of the
ambient coordinates Z1, Z2, and Z3 depend on S˛:

Z1 D Z1
�
S1; S2

	
(10.1a)

Z2 D Z2
�
S1; S2

	
(10.1b)

Z3 D Z3
�
S1; S2

	
: (10.1c)

For example, if the ambient Euclidean space is referred to Cartesian coordinates,
then the equations

x .	; 
/ D A sin 	 cos
 (10.2a)

y .	; 
/ D B sin 	 sin
 (10.2b)

z .	; 
/ D C sin 	 (10.2c)

describe an ellipsoid with semiaxes A, B , and C . The coordinate lines for this
parameterization are shown in Fig. 10.1.

The variables S˛ are called surface coordinates. We use letters from the Greek
alphabet for surface indices, which assume values from 1 to m. We continue to
use the Latin alphabet for ambient indices which change from 1 to n. Most of the
equations in this chapter apply for arbitrary n and m and will point out when that is
not the case. Our primary interest is two-dimensional surfaces (m D 2) embedded
in three-dimensional Euclidean spaces (n D 3).

Fig. 10.1 The surface of an
ellipsoid referred to in
spherical coordinates, a
natural choice
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10.3 The Fundamental Differential Objects on the Surface

Rewrite equations (10.1a)–(10.1c) in tensor notation

Zi D Zi .S/ ; (10.3)

where we enumerated the ambient variables and suppressed the surface index of the
function argument.

The important role of the shift tensor becomes evident when we introduce the
covariant basis S˛ . It is constructed in a way that is analogous to the ambient
covariant basis Zi , the definition of which is given in equation (5.2). Consider the
position vector R as a function of surface coordinates S˛:

R D R .S/ : (10.4)

The covariant basis S˛ is defined by partial differentiation

S˛ D @R
@S˛

: (10.5)

The geometric interpretation of S˛ is straightforward: these vectors are tangential
to the surface S ; more specifically, they are tangential to the coordinate lines
corresponding to S1 and S2. The plane spanned by the vectors S˛ is called the
tangential plane (Fig. 10.2).

There is a natural connection between the surface and ambient bases. It comes
from the identity

R .S/ D R .Z .S// ; (10.6)

which states this obvious fact: if we consider R as a function of the ambient
coordinates Zi and substitute into that function the equation of the surface (10.3),
then the result of the composition is the position vector R as a function of the surface
coordinates S˛ . Differentiate the identity in equation (10.6) with respect to S˛:

Fig. 10.2 A curved surface,
its coordinate lines, and a
covariant basis at one of the
points
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@R
@S˛

D @R
@Zi

@Zi

@S˛
; (10.7)

where @Zi=@S˛ are the partial derivatives of the equation of the surface (10.3).
These derivatives are denoted by the symbol Zi

˛ known as the shift tensor:

Zi
˛ D @Zi

@S˛
: (10.8)

With this new symbol, equation (10.7) can be rewritten as

S˛ D Zi
˛Zi : (10.9)

Thus, the shift tensor relates the surface and the ambient basis. Equation (10.9) is
only one of out many important relationships in which the shift tensor plays a key
role. The shift tensor is prominent is all identities that relate ambient and surface
objects.

We see from equation (10.9) that the entries of the shift tensor Zi
˛ are the

components of the surface covariant basis vectors S˛ with respect to the ambient
basis Zi . Dotting both sides of this equation with Zj (and the renaming j ! i ),
we obtain an equation that is equivalent to (10.9) and gives an explicit expression
for Zi

˛:

Zi
˛ D S˛ � Zi : (10.10)

It may be said that the shift tensor represents the tangent space. Indeed, suppose
that a vector T lies in the tangent space and has components T i :

T D T iZi : (10.11a)

The tensor T i is called the ambient components of vector T. Then the system T i

can be represented as a linear combinations of the systems Zi
1 and Zi

2, and that is
the sense in which Zi

˛ represents the tangent space.
Let us demonstrate why the components T i of any tangent vector T can be

represented by a linear combination of Zi
1 and Zi

2. By definition, T can be
represented by a linear combination of the surface covariant basis

T D T ˛S˛: (10.12)

The tensor T ˛ represents the surface components of the vector T. Substitute
equation (10.9) into equation (10.12):

T D T ˛Zi
˛Zi : (10.13)
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In combination with (10.11a), this equation leads to the conclusion that

T i D T ˛Zi
˛ (10.14)

which shows T i as a linear combination of Zi
1 and Zi

2 and indicates that the coeffi-
cients of this linear combination are the surface components of T. Equation (10.14)
also justifies the name of the shift tensor: it translates or shifts components of tangent
vector from surface to ambient.

This shifting works in both directions. We show below that the following identity
holds

T ˛ D T iZ˛
i : (10.15)

However, we have not yet developed all the machinery to use the shift tensor Z˛
i

with an upper surface index because we have not yet introduced the surface metric
tensor. We now turn to the task of developing the metric tensors.

The surface covariant metric tensor S˛ˇ is defined analogously to the ambient
metric tensor:

S˛ˇ D S˛ � Sˇ: (10.16)

In words, the entries of the metric tensor are the pairwise dot products of the
covariant basis elements. Compare equation (10.16) to the analogous definition
of the ambient covariant metric tensor in equation (5.7). Therefore, by similar
arguments, the covariant metric tensor is symmetric

S˛ˇ D Sˇ˛ (10.17)

and positive definite.
Naturally, the ambient and the surface covariant bases are related by the shift

tensor. Equation (10.9) helps derive that relationship:

S˛ˇ D S˛ � Sˇ D ZiZi
˛ � ZjZ

j

ˇ D ZijZ
i
˛Z

j

ˇ : (10.18)

In brief,

S˛ˇ D ZijZ
i
˛Z

j

ˇ : (10.19)

By letting the metric tensor lower one of the ambient indices, we may rewrite
equation (10.19) as

S˛ˇ D Zi˛Z
i
ˇ: (10.20)
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The contravariant metric tensor S˛ˇ is defined as the matrix inverse of S˛ˇ:

S˛ˇSˇ� D ı˛� ; (10.21)

where ı˛� satisfies the usual definition of the Kronecker symbol. The contravariant
metric tensor is symmetric and positive, definite and much of what could be said of
the ambient metric tensor can also be said of the surface metric tensor. Now that we
have the covariant and the contravariant metric tensors, we have rules for juggling
surface indices. For instance,

Ziˇ D Zi
ˇS

˛ˇ: (10.22)

Further, by raising the index ˛, we can rewrite equation (10.20) in the following
beautiful way

Z˛
i Z

i
ˇ D ı˛ˇ (10.23)

In other words, the objects Z˛
i and Zi

ˇ are matrix inverses of each other in the sense
of contraction by the longer dimension.

Exercise 213. Explain why it is not possible that Zi
˛Z

˛
j D ıij .

Exercise 214. Derive equation (10.15) from equation (10.14).

The rest of the surface metrics are defined analogously to their ambient counter-
parts. The object S is defined as the determinant of the covariant metric tensor

S D jS��j (10.24)

and its square root
p
S is the area element, by analogy with the volume elementp

Z in the ambient space. The Levi-Civita symbols are defined according to the
formulas

"˛ˇ D p
Se˛ˇ (10.25a)

"˛ˇ D e˛ˇp
S
; (10.25b)

where e˛ˇ is the skew-symmetric system with nonzero entries

e12 D �e21 D 1: (10.26)

The surface ı-symbols are also defined analogously to their ambient counterparts.
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10.4 Surface Tensors

In what sense is Zi
˛ a tensor? We are working with two simultaneous systems of

coordinates, ambient coordinates Zi , and surface coordinates S˛ . Both choices are
arbitrary and we must consider the transformations of variants under changes of
both coordinate systems. Suppose that Zi 0 and S˛

0

are two alternative coordinate
systems. The ambient coordinates Zi and Zi 0 are related by equations (4.63)
and (4.64) and the surface coordinates S˛ and S˛

0

are related by the following
mutually inverse relationships:

S˛
0 D S˛

0

.S/ (10.27)

S˛ D S˛
�
S 0	 : (10.28)

Define the Jacobian objects J ˛
˛0 and J ˛

0

˛ by

J ˛
0

˛ D @S˛
0

.S/

@S˛
(10.29)

J ˛˛0 D @S˛ .S 0/
@S˛

0
: (10.30)

We now define the tensor property for surface variants. Consider a variant T i˛jˇ with
a fully representative collection of indices. Suppose that its values in the alternative
coordinate systems is T i

0˛0

j 0ˇ0 . Then T i˛jˇ is a tensor if

T i
0˛0

j 0ˇ0 D T i˛jˇ J
i 0

i J
j

j 0J
˛0

˛ J
ˇ

ˇ0 ; (10.31)

and it is clear how this definition should be modified for other index signatures.
Let us demonstrate that the shift tensor Zi

˛ is indeed a tensor. Its entries Zi 0

˛0 in
the alternative coordinates are given by the partial derivative

Zi 0

˛0 D @Zi 0.S
0

/

@S˛
0
; (10.32)

where Zi 0
�
S 0	 is the parametric representation of the surface in the alternative

coordinates. The three functionsZi 0 .S 0/ can be constructed by the following double
composition

Zi 0
�
S 0	 D Zi 0

�
Z
�
S
�
S 0			 ; (10.33)

where Zi 0 .Z/ gives the new ambient coordinates in terms of the old ambient
coordinates, Z .S/ represents the surface in old coordinates and S .S 0/ gives the
old surface coordinates in terms of the new surface coordinates. By a repeated
application the chain rule, we have
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@Zi 0

@Z˛0
D @Zi 0

@Zi

@Zi

@S˛
@S˛

@S˛
0
; (10.34)

or

Zi 0

˛0 D Zi
˛J

i 0

i J
˛
˛0 ; (10.35)

and the proof of the tensor property of the shift tensor is complete.
At this point, we only need to mention that the entire contents of Chap. 6 carry

over naturally to surface tensors. We conclude that S˛ , S˛ˇ , S˛ˇ , "˛ˇ , "˛ˇ are tensors
and that S , e˛ˇ and e˛ˇ are relative tensors.

10.5 The Normal N

The covariant basis S˛ and its ambient components captured by the shift tensor Zi
˛

are analytical representations of the tangent plane. The normal direction is captured
by the normal N with components N i . The normal vector N is defined by the
identities

N � S˛ D 0 (10.36a)

N � N D 1; (10.36b)

where the first equation states that the normal is orthogonal to the tangent plane
and the second equation states that the normal is unit length. These equations are
satisfied by two equal and opposite vectors and the choice of normal depends on the
particular problem. For closed surfaces, the exterior normal is often chosen.

Denote the contravariant components of the normal vector by N i :

N D N iZi : (10.37)

We will later establish the following explicit expression for N i

N i D 1

2
"ijk"˛ˇZ

˛
j Z

ˇ

k : (10.38)

However, this expression is not needed to derive most of the relationships involving
N i . For example, equation (10.36a) implies

NiZ
i
˛ D 0: (10.39)

To show this, we write

0 D N � S˛ D NjZj �Zi
˛Zi D NjZi

˛Zij D NiZ
i
˛: (10.40)

Similarly, equation (10.36b) implies

NiN
i D 1: (10.41)
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10.6 The Normal and Orthogonal Projections

The normal projection of a vector V is a vector P that point along the normal N and
has the length such that the difference V � P is orthogonal to N. From geometric
considerations, it is evident that the length of P equals V � N and therefore

P D .V � N/N: (10.42)

If the geometric reasoning does not convince you, the validity of equation (10.42)
can be established algebraically.

Exercise 215. Show that .V � P/ � N, where P is defined by equation (10.42), is
zero.

In component form, equation (10.42) reads

P D V jNjN
iZi : (10.43)

Therefore, the components of P i of P are given by

P i D N iNjV
j : (10.44)

The tensor

N iNj (10.45)

is therefore the projection operator onto the normal N. In alternative terminology, it
is the projection away from the surface S .

Exercise 216. Denote the tensor N iNj by P i
j . Show that

P i
j P

j

k D P i
k : (10.46)

In other words, a repeated application of this projection operator leaves the
projection unchanged. In matrix notation, this property reads P 2 D P . From this
form, it is evident that all eigenvalues of P or either 0 or 1.

We now turn to the orthogonal projection onto the surface S . The orthogonal
projection of a vector V is the vector T in the tangent plane such that V � T
is orthogonal to the tangent plane. The orthogonal projection T is given by the
remarkably simple expression

T D .V � S˛/ S˛: (10.47)

It is evident that T lies in the tangent plane.
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Exercise 217. To show V � T that is orthogonal to the tangent plane, show that
.V � T/ � Sˇ D 0.

In component form, equation (10.47) reads

T D V jZ˛
j Z

i
˛Zi ; (10.48)

which yields the component T i of the vector T

T i D Zi
˛Z

˛
j V

j : (10.49)

Therefore, the tensor

Zi
˛Z

˛
j (10.50)

is interpreted as the operator of projection onto the surface S .
The compactness of the expressionZi

˛Z
˛
j is indeed remarkable. If you will recall

from linear algebra, the problem of finding the orthogonal projection onto a linear
subspace is solved by the technique of least squares [44]. If A is the rectangular
matrix that has columns spanning the linear subspace (i.e., A corresponds to Zi

˛),
then the projection operator is given by the combination

A
�
ATA

	�1
AT : (10.51)

Expression (10.50) includes all of the same elements; however, the cumbersome part
of equation (10.51)

�
ATA

	�1
is captured by the raised surface index of the second

shift tensor. This is because ATA is the matrix expression for S˛ˇ and
�
ATA

	�1
is

the matrix expression for S˛ˇ .

Exercise 218. Denote the tensor N iNj by T ij . Show that

T ij T
j

k D T ik : (10.52)

The vector V equals the sum of its normal and orthogonal projections

V D P C T: (10.53)

This identity is evident geometrically, but can also be shown algebraically. For an
algebraic proof, note that the set of vectors fN;S1;S2g forms a basis for the three-
dimensional linear space at any point on the surface. Since dotting equation (10.53)
with each of these vectors produce the same result on both sides, the validity of this
equation is confirmed.

In component form, equation (10.53) reads

V i D
�
N iNj CZi

˛Z
˛
j

�
V j : (10.54)
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Since this identity is valid for any V j , we arrive at the fundamental relationship

N iNj CZi
˛Z

˛
j D ıij : (10.55)

This beautiful relationship is used frequently in tensor calculus, and you will
encounter it often in the remainder of this book.

Exercise 219. Derive equation (10.41) from equation (10.55).

10.7 Working with the Object N i

We derived the key properties of the normal N and its components N i without the
explicit formula (10.38):

N i D 1

2
"ijk"˛ˇZ

˛
j Z

ˇ

k : (10.38)

In applications, the formula (10.38) is often used to calculate the actual components
N i . We note that equation (10.38) applies to two-dimensional surfaces. For other
dimensions it needs to be modified. For a two-dimensional ambient space, the
equation becomes

N i D "ij "˛Z
˛
j : (10.56)

For an n-dimensional ambient space, the definition of N i reads

N i D 1

.n � 1/Š"
ij1���jn�1"˛1���˛n�1Z

˛1
j1
: : : Z

˛n�1

jn�1
: (10.57)

The following discussion applies to the three-dimensional ambient space, but can
be easily extended to hypersurfaces in any dimension.

We first establish that formula (10.38) is indeed a correct expression for the
components of the normal. In other words, we must verify equations (10.39)
and (10.41). To verify (10.39), we write

N iZ
�
i D 1

2
"ijk"˛ˇZ

˛
j Z

ˇ

k Z
�
i : (10.58)

For any system T ˛i , the combination "ijkT ˛i T
ˇ
j T

�

k is fully skew-symmetric on the
indices ˛, ˇ, and � . For instance, switching ˛ and ˇ, we find by the swap–reshuffle–
rename strategy

"ijkT
ˇ
i T

˛
j T

�

k D �"j ikT ˇi T ˛j T �k D �"j ikT ˛j T ˇi T �k D �"ijkT ˛i T ˇj T �k : (10.59)
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Being fully-skew symmetric, "ijkT ˛i T
ˇ
j T

�

k vanishes if any of the indices ˛, ˇ,
or � have the same value, which is unavoidable since these three indices can
assume only two different values. Therefore, "ijkZ˛

j Z
ˇ

k Z
�
i vanishes identically and

equation (10.39) is confirmed.
Equation (10.41) presents a more interesting opportunity of working with the

Levi-Civita symbols. Let us begin by setting up the expression NiN i

NiN
i D 1

4
"ijk"

˛ˇZj
˛Z

k
ˇ"
irs"
�Z



r Z

�
s : (10.60)

First, combine the Levi-Civita symbols into ı-symbols:

NiN
i D 1

4
ıirsijkı

˛ˇ

�Z

j
˛Z

k
ˇZ



r Z

�
s : (10.61)

Recall that

ı˛ˇ
� D ı˛
 ı
ˇ
� � ıˇ
 ı˛� : (10.62)

Thus, the right-hand side in equation (10.61) breaks up into two terms. In the first
term, 
 becomes ˛ and � becomes ˇ, and visa versa in the second term:

NiN
i D 1

4
ıirsijkZ

j
˛Z

k
ˇZ

˛
r Z

ˇ
s � 1

4
ıirsijkZ

j
˛Z

k
ˇZ

ˇ
r Z

˛
s : (10.63)

Next, recall that

ıirsijk D ırsjk (10.64)

and

ırsjk D ırj ı
s
k � ısj ırk: (10.65)

We therefore have four terms

NiN
i D 1

4
Zj
˛Z

k
ˇZ

˛
j Z

ˇ

k � 1

4
Zj
˛Z

k
ˇZ

˛
kZ

ˇ
j � 1

4
Zj
˛Z

k
ˇZ

ˇ
j Z

˛
k C 1

4
Zj
˛Z

k
ˇZ

ˇ

k Z
˛
j :

(10.66)
The key to the next step is equation (10.23). Using that identity twice in each term
yields

NiN
i D 1

4
ı˛˛ı

ˇ

ˇ � 1

4
ıˇ˛ ı

˛
ˇ � 1

4
ıˇ˛ ı

˛
ˇ C 1

4
ı˛˛ı

ˇ

ˇ : (10.67)

It is left as an exercises to confirm that the sum of the four terms on the right-hand
side is indeed 1.



10.7 Working with the Object N i 173

The final relationship to be verified is equation (10.55). The derivation essentially
follows that of equation (10.41). Form the combination N iNr

N iNr D 1

4
"ijk"˛ˇZ

˛
j Z

ˇ

k "rst "
��Zs

�Z
t
� ; (10.68)

and combine the Levi-Civita symbols into ı-symbols:

N iNr D 1

4
ı
ijk
rst ı

��
˛ˇZ

˛
j Z

ˇ

k Z
s
�Z

t
� ; (10.69)

By the identity ı��˛ˇ D ı�˛ ı
�
ˇ � ı�˛ı˛ˇ , we have

N iNr D 1

4
ı
ijk
rst Z

˛
j Z

ˇ

k Z
s
˛Z

t
ˇ � 1

4
ı
ijk
rst Z

˛
j Z

ˇ

k Z
s
ˇZ

t
˛; (10.70)

For brevity, let

T ij D Zi
˛Z

˛
j (10.71)

and recall from an earlier exercise that

T ij T
j

k D T ik : (10.72)

Further,

T ii D 2 (10.73)

Then

N iNr D 1

4
ı
ijk
rst T

s
j T

t
k � 1

4
ı
ijk
rst T

t
j T

s
k : (10.74)

Exercise 220. Show that the two terms in equation (10.74) are equal, thus

N iNr D 1

2
ı
ijk
rst T

s
j T

t
k (10.75)

According to equation (9.20), we find

N iNr D 1

2

�
ıir ı

j
s ı

k
t � ıjr ıisıkt C ıjr ı

k
s ı
i
t � ıkr ıjs ıit C ıkr ı

i
sı
j
t � ıir ıks ıjt

�
T sj T

t
k ;

(10.76)
which yields the following six terms

N iNr D 1

2

�
ıirT

j
j T

k
k � ıjr T ij T kk C ıjr T

k
j T

i
k � ıkr T jj T ik C ıkr T

i
j T

j

k � ıirT kj T jk
�
:

(10.77)
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With the help of equations (10.72) and (10.73), we simplify each term

N iNr D 1

2

�
4ıir � 2T ir C T ir � 2T ir C T ir � 2ıir

	
: (10.78)

We have therefore obtained

N iNr D ıir � T ir ; (10.79)

which is precisely the relationship that we set out to prove.

10.8 The Christoffel Symbol �˛
ˇ�

The Christoffel symbol measures the rate of change of the covariant basis with
respect the coordinate variables. Recall the definition of the ambient Christoffel
symbol �kij in Chap. 5:

@Zi
@Zj

D �kijZk: (5.56)

The analogous definition @S˛=@Sˇ D �
�

˛ˇS� is not possible on an embedded
surface. This is because the covariant basis S˛ is capable of representing vectors
only in the tangent plane. On the other hand, there is no reason to expect the vectors
@S˛=@Sˇ to lie in the tangent plane. If the surface curves, at least some of the four
vectors @S˛=@Sˇ will have a component along the normal direction.

We will therefore define the Christoffel symbol ��˛ˇ by analogy with equa-
tion (5.60):

�kij D Zk � @Zi
@Zj

: (5.60)

The definition reads

�˛ˇ� D S˛ � @Sˇ
@S�

: (10.80)

Since the central function of the Christoffel symbol is to facilitate covariant
differentiation, our primary concern is that the Christoffel symbol transforms
according to a certain rule and that is certainly achieved by definition (10.80). That
rule is

�˛
0

ˇ0� 0 D �˛ˇ�J
˛0

˛ J
ˇ

ˇ0J
�

� 0 C J ˛ˇ0� 0J
˛0

˛ : (10.81)

Exercise 221. Derive equation (10.81) from the definition (10.80).
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The Christoffel tensor can also be defined bypassing the covariant basis S˛ and
by referencing the covariant basis S˛ˇ

�˛ˇ� D 1

2
Z˛!

�
@S!ˇ

@S�
C @S!�

@Sˇ
� @Sˇ�

@S!

�
; (10.82)

which is analogous to equation (5.66). The possibility of this definition takes on
great significance in the discussion of Riemann spaces.

Exercise 222. Derive equation (10.82).

Finally, we determine the relationship between the ambient and surface Christof-
fel symbols. Into equation (10.80) substitute the expression for the surface basis in
terms of the ambient basis

�˛ˇ� D Z˛
i Zi �

@
�
Z
j

ˇZj
�

@S�
: (10.83)

By the product rule

�˛ˇ� D Z˛
i Zi � @Z

j

ˇ

@S�
Zj CZ˛

i Z
j

ˇZi � @Zj
@S�

: (10.84)

In the first term, the dot product of the basis vectors gives ıij . In the second term,
the partial derivative is analyzed by the chain rule. The final relationship is

�˛ˇ� D Z˛
i

@Zi
ˇ

@S�
C �ijkZ

˛
i Z

j

ˇZ
k
ˇ: (10.85)

This relationship offers an effective way of calculating the surface Christoffel
symbol.

Exercise 223. Show that when the ambient space is referred to affine coordinates,
the relationship between the surface and the ambient Christoffel symbols simpli-
fies to

�˛ˇ� D Z˛
i

@Zi
ˇ

@S�
: (10.86)

10.9 The Length of an Embedded Curve

Suppose that a curve that lies in the surface S is given parametrically by�
S1 .t/ ; S2 .t/

	
. Collectively,
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S˛ D S˛ .t/ : (10.87)

This curve can also be considered as a curve in the ambient space where its
parametric equations are obtained by composing the surface equations (10.3) with
curve equations

Zi .t/ D Zi .S .t// : (10.88)

Differentiating with respect to t , we find

dZi

dt
D Zi

˛

dS˛

dt
: (10.89)

Since the length of the curve is given by

L D
Z b

a

r
Zij

dZi

dt

dZj

dt
dt; (5.20)

by substituting (10.89) in (5.20), we find

L D
Z b

a

s
ZijZi

˛

dS˛

dt
Z
j

ˇ

dSˇ

dt
dt; (10.90)

which, by equation (10.19), yields the beautiful, albeit expected, result

L D
Z b

a

s
S˛ˇ

dS˛

dt

dSˇ

dt
dt: (10.91)

Therefore, much of what was said in Sect. 5.8 regarding reconstructing the
ambient metric tensor from curves lengths can be carried over to surfaces. The
surface metric tensor can likewise be reconstructed from the lengths of curves that
lie in the surface. Therefore, the metric tensor is intrinsic, despite the fact that
definition (10.16) is extrinsic since it relies on the covariant basis.

Intrinsic geometry on surfaces is much more exciting than in the ambient space.
The interest comes from the fact that different surfaces can have identical intrinsic
geometries. For example, a section of a plane can be deformed into a cylinder
or a cone without changing the lengths of any of the curves contained within it.
The word deformation refers to a pointwise mapping between two surfaces and the
coordinate systems are such that corresponding points have identical coordinates. A
deformation that preserves the lengths of curves is called an isometric deformation
(or transformation) or an isometry. Two surfaces related by an isometric deforma-
tion are said to be isometric. For example, the catenoid and the helicoid shown
if Fig. 10.3 are isometric. Isometries are often described informally as distance-
preserving transformations. This description captures the spirit of the definition;
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Fig. 10.3 The catenoid and
the helicoid are famous for
being minimal surfaces
discovered by Euler and
Meussnier. These surfaces are
also famous for being
isometric and therefore
intrinsically identical. The
catenoid is shown with a cut
through and along which a
discontinuity in the isometric
transformation may occur

however, the term distance, when used in the context of a curved surface, is vague.
We therefore rely on the clear notion of length of curves.

Since the metric tensor can be reconstructed from lengths of curves, isometric
surfaces have identical metric tensors at corresponding points. This means that all
objects derived from the metric tensor—most notably the upcoming Christoffel
symbol and the Riemann–Christoffel tensor—are identical as well. As in the
ambient case, these objects are called intrinsic and it can be said that isometric
surfaces have identical intrinsic geometries.

10.10 The Impossibility of Affine Coordinates

Until this chapter, we have been discussing Euclidean spaces. In Chap. 2, while we
did not give a formal definition of a Euclidean space, we agreed that we intuitively
understood Euclidean spaces as being straight. A related property of a Euclidean
space is the possibility of referring it to an affine coordinate system. An affine
coordinate system is characterized by a constant metric tensor and a vanishing
Christoffel symbol.

On most curved surfaces, it is not possible to introduce an affine coordinate
system (i.e., a coordinate system characterized by a vanishing Christoffel symbol),
not even on a small patch. In other words, a curved surface is generally not a
Euclidean field. So far, we have not developed the necessary analytical machinery
to demonstrate this idea. This machinery will be developed over the next two
chapters and the impossibility of affine coordinates will be convincingly presented
in Chap. 12 on curvature, where a nonvanishing Gaussian curvature will provide
irrefutable analytical evidence of this impossibility.

There are several types of surfaces that are exceptions to this rule, namely,
surfaces isometric to a plane. Two such surfaces are the cylinder and the cone. What
these two surfaces have in common is that we can form them from a flat sheet of
paper without sheering or stretching. In other words, we can form them by isometric
deformations, that is. deformations that do not change distances between points. The
discussion of these ideas is the highlight of Chap. 12 and possibly of this entire book.
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10.11 Examples of Surfaces

In all examples, the ambient space is referred to Cartesian coordinates x; y; z or
x1; y1; z1.

10.11.1 A Sphere of Radius R

Consider a sphere of radius R (Fig. 10.4) given by

x .	; 
/ D R sin 	 cos
 (10.92)

y .	; 
/ D R sin 	 sin
 (10.93)

z .	; 
/ D R cos 	: (10.94)

Shift tensor

Zi
˛ D

2
4R cos 	 cos
 �R sin 	 sin

R cos 	 sin
 R sin 	 cos


�R sin 	 0

3
5 (10.95)

Exterior normal

N i D
2
4 sin 	 cos


sin 	 sin

cos 	

3
5 : (10.96)

The normal N i can be obtained as the cross product of the “columns” of Zi
˛ .

However, in this simple case, we simply guessed the values of N i from geometric
considerations.

Metric tensors

S˛ˇ D
�
R2 0

0 R2 sin2 	

�
I S˛ˇ D

�
R�2 0

0 R�2 sin�2 	

�
: (10.97)

Area element

p
S D R2 sin 	: (10.98)

Christoffel symbol. Letting ‚ D 1 and ˆ D 2, the nonzero entries are

�‚ˆˆ D � sin 	 cos 	 (10.99)
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Fig. 10.4 A sphere of radius
R referred to a spherical
coordinate system

�ˆ‚ˆ D �ˆˆ‚ D cot 	: (10.100)

10.11.2 A Cylinder of Radius R

An infinite cylinder of radius R (Fig. 10.5) is given by

x1 .	; z/ D R cos 	 (10.101)

y1 .	; z/ D R sin 	 (10.102)

z1 .	; z/ D z: (10.103)

Shift tensor and exterior normal

Zi
˛ D

2
4�R sin 	 0

R cos 	 0
0 1

3
5 I N i D

2
4 cos 	

sin 	
0

3
5 (10.104)

Metric tensors

S˛ˇ D
�
R2 0

0 1

�
I S˛ˇ D

�
R�2 0
0 1

�
(10.105)

Area element

p
S D R (10.106)

The Christoffel symbol vanishes indicated that the chosen coordinate system is
affine.
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Fig. 10.5 Infinite cylinder of
radius R referred to
coordinates Z1 D 	 , Z2 D �

10.11.3 A Torus with Radii R and r

Suppose that the torus (Fig. 10.6) is given by the equations

x .	; 
/ D .RC r cos
/ cos 	 (10.107)

y .	; 
/ D .RC r cos
/ sin 	 (10.108)

z .	; 
/ D R sin
; (10.109)

where 	 D S1 and 
 D S2.

Shift tensor and exterior normal

Zi
˛ D

2
4� .RC r cos
/ sin 	 �r cos 	 sin


.RC r cos
/ cos 	 �r sin 	 sin

0 r cos


3
5 I N i D

2
4 cos 	 cos


sin 	 cos

sin


3
5 (10.110)

Metric tensors

S˛ˇ D
�
.RC r cos
/2 0

0 r2

�
I S˛ˇ D

�
.RC r cos
/�2 0

0 r�2
�

(10.111)

Area element

p
S D r .RC r cos
/ (10.112)
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Fig. 10.6 Torus
characterized by radii R and
r . The surface is referred to
coordinates S1 D 	 and
S2 D 


Christoffel symbol. Letting ‚ D 1 and ˆ D 2, the nonzero entries are

�ˆ‚‚ D RC r cos


r
(10.113)

�‚‚ˆ D �‚ˆ‚ D � r sin


RC r cos

: (10.114)

10.11.4 A Surface of Revolution

Consider a surface of revolution in Cartesian coordinates x1; y1; z1 is given by

x1 .	; z/ D r .z/ cos 	 (10.115)

y1 .	; z/ D r .z/ sin 	 (10.116)

z1 .	; z/ D z: (10.117)

Note that the cylinder (10.101)–(10.103) is a surface of revolution with r .z/ D R.
Shift tensor and exterior normal

Zi
˛ D

2
4�r .z/ sin 	 r 0 .z/ cos 	

r .z/ cos 	 r 0 .z/ sin 	
0 1

3
5 I N i D

2
664

cos 	p
1Cr 0.z/2

sin 	p
1Cr 0.z/2

r 0.z/p
1Cr 0.z/

3
775 (10.118)

Metric tensors

S˛ˇ D
�
r .z/2 0

0 1C r 0 .z/2
�

I S˛ˇ D
"
r .z/�2 0

0 1

1Cr 0.z/2

#
(10.119)
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Area element

p
S D r .z/

q
1C r 0 .z/2 : (10.120)

Christoffel symbols. Letting ‚ D 1 and Z D 2, the nonzero entries are

�‚‚Z D �‚Z‚ D r 0 .z/
r .z/

(10.121)

�Z‚‚ D r .z/ r 0 .z/
1C r 0 .z/2

(10.122)

�ZZZ D r 0 .z/ r 00 .z/
1C r 0 .z/2

: (10.123)

Exercise 224. Derive the objects given in this section.

Exercise 225. Rederive the objects on the sphere by referring the ambient space to
spherical coordinates r1; 	1; 
1 in which the sphere is given by

r1 .	; 
/ D R (10.124)

	1 .	; 
/ D 	 (10.125)


1 .	; 
/ D 
: (10.126)

10.11.5 A Planar Curve in Cartesian Coordinates

A curve embedded in a two-dimensional plane can be viewed as a hypersurface.
Suppose that the plane is referred to Cartesian coordinates x; y and let the curve be
referred to S1 D t .

Shift tensor and normal

Zi
˛ D

�
x0 .t/
y0 .t/

�
I N i D

2
4

y0.t/p
x0.t/2Cy0.t/2

� x0.t/p
x0.t/2Cy0.t/2

3
5 (10.127)

Metric tensors

S˛ˇ D x0 .t/2 C y0 .t/2 I S˛ˇ D 1

x0 .t/2 C y0 .t/2
(10.128)
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Volume (or length) element

p
S D

q
x0 .t/2 C y0 .t/2 (10.129)

The Christoffel symbol �˛ˇ� has a single entry Q� with the value

Q� D x0 .t/ x00 .t/C y0 .t/ y00 .t/
x0 .t/2 C y0 .t/2

: (10.130)

Exercise 226. Show that when the curve is referred to the arc length s, the above
expression simplifies to the following

N i ;D
�
y0 .s/
x0 .s/

�
I S˛ˇ D 1I S˛ˇ D 1I p

S D 1I Q� D 0 (10.131)

Note that Q� simplifies to x0 .s/ x00 .s/C y0 .s/ y00 .s/ and you need to show that this
expression vanishes identically.

Exercise 227. Show that when the curve is given as a graph y D y .x/, the same
differential objects are given by

Zi
˛ D

�
1

g0 .x/

�
I N i D

2
4

y0.x/p
1Cy0.x/2

� 1p
1Cy0.x/2

3
5 (10.132)

S˛ˇ D 1C y0 .x/2 I S˛ˇ D 1

1C y0 .x/2
(10.133)

S D
q
1C y0 .x/2I Q� D y0 .x/ y00 .x/

1C y0 .x/2
(10.134)

10.12 A Planar Curve in Polar Coordinates

Suppose that the plane is referred to Cartesian coordinates .r; 	/ and let the curve
be referred to S1 D t . Let the curve be given by .r .t/ ; 	 .t//.
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Shift tensor and normal

Zi
˛ D

�
r 0 .t/
	 0 .t/

�
I N i D

2
4

r.t/	 0.t/p
r 0.t/2Cr.t/2	 0.t/2

� r.t/�1r 0.t/p
r 0.t/2Cr.t/2	 0.t/2

3
5 (10.135)

Metric tensors

S˛ˇ D r 0 .t/2 C r .t/2 	 0 .t/2 I S˛ˇ D 1

r 0 .t/2 C r .t/2 	 0 .t/2
(10.136)

Area element

p
S D

q
r 0 .t/2 C r .t/2 	 0 .t/2 (10.137)

The Christoffel symbol �˛ˇ� has a single entry with the value

�111 D r .t/ r 0 .t/ 	 0 .t/2 C r 0 .t/ r 00 .t/C r .t/2 	 0 .t/ 	 00 .t/
r 0 .t/2 C r .t/2 	 0 .t/2

: (10.138)

Exercise 228. Show that when the curve is referred to the arc length s, the above
expression simplify to the following

Zi
˛ D

�
r 0 .s/
	 0 .s/

�
I N i D

�
r .s/ 	 0 .s/

�r .s/�1 r 0 .s/

�
(10.139)

S˛ˇ D 1I S˛ˇ D 1 (10.140)
p
S D 1I Q� D 0 (10.141)

Again, note that Q� simplifies to r .s/ r 0 .s/ 	 0 .s/2Cr 0 .s/ r 00 .s/Cr .s/2 	 0 .s/ 	 00 .s/
and it remains to show that this expression vanishes identically.

10.13 Summary

This chapter, devoted to the fundamental differential objects on surfaces, parallels
Chap. 5 concerned with Euclidean spaces. Curved surfaces add new richness to
tensor calculus, which proves time and again that the tensor framework is ideally
suited for numerous aspects of differential geometry. This chapter was focused on
the tangent and normal spaces as well as on the surface metrics. We discovered a
number of important relationships involving the shift tensor and the normal. The
most vivid relationships were captured by equations (10.23) and (10.55).



Chapter 11
The Covariant Surface Derivative

11.1 Preview

In the preceding chapter, we gave an overview of embedded surfaces. We now
turn to the important question of covariant differentiation on the surface. We
will divide the construction of the covariant derivative into two parts. We will
first define this operator for objects with surface indices. The definition will be
completely analogous to that of the covariant derivative in the ambient space.
While the definition will be identical, some of the important characteristics of the
surface covariant derivative will be quite different. In particular, surface covariant
derivatives do not commute. Our proof of commutativity for the ambient derivative
was based on the existence of affine coordinates in Euclidean spaces. Since affine
coordinates may not be possible on a curved surface, that argument is no longer
available. We will also discover that the surface covariant derivative is not metrinilic
with respect to the covariant basis S˛ . This will prove fundamental and will give rise
to the curvature tensor, which will be further developed in Chap. 12.

Having defined the covariant derivatives for objects with surface indices, we will
extend the definition to surface objects with ambient indices, such as the shift tensor
Zi
˛ and normal N i . We will discover a chain rule that applies to surface restrictions

of objects defined in the ambient space. The chain rule will show that the surface
covariant derivative is metrinilic with respect to the ambient metrics. Finally, we
will derive formulas for differentiating the shift tensor and the normal.

11.2 The Covariant Derivative for Objects
with Surface Indices

We begin our discussion by constructing the covariant derivative as applied to
objects with surface components only. These objects include the covariant and the
contravariant bases S˛ and S˛ , metric tensors S˛ˇ and S˛ˇ , and Levi-Civita symbols

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 11, © Springer Science+Business Media New York 2013
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"˛ˇ and "˛ˇ . For the time being, the covariant derivative will remain undefined for
objects with ambient indices, such as the shift tensor Zi

˛ and the normal N i .
Having introduced the Christoffel symbol �˛ˇ” , we can define the covariant

derivative r” for a variant T ˛ˇ (with a representative collection of surface indices)
by analogy with the ambient case:

r”T
˛
ˇ D @T ˛ˇ

@S”
C �˛”!T

!
ˇ � �!”ˇT ˛! : (11.1)

On a curved surface, the Christoffel symbol is defined by equation (10.80)

�˛ˇ” D S˛ � @Sˇ
@S”

(10.80)

by analogy with the ambient equation (5.60)

�kij D Zk � @Zi
@Zj

; (5.60)

since the analogy with the ambient equation (5.56)

@Zi
@Zj

D �kijZk (5.56)

may not be possible: the vector @Sˇ=@S” may very well lie out of the tangent plane
due to curvature. This may be seen as the source of all analytical differences between
the surface and the ambient covariant derivatives.

The two main differences are (1) surface covariant derivatives do not commute,
and (2) the metrinilic property of the surface covariant derivative does not hold
for the surface covariant basis. The cause for both of these facts will be seen to
be curvature. The replacement identities offer tremendous analytical and geometric
insight into the properties of curvature. The discussion of these ideas is saved for
Chap. 12, an entire chapter devoted to curvature. In this chapter, curvature and the
modified commutativity equation are given but not discussed.

11.3 Properties of the Surface Covariant Derivative

In this section, we give an enumeration of the surviving properties of the covariant
derivative. These properties can be demonstrated in the same way as those for the
ambient covariant derivative.

1. The covariant derivative produces tensors out of tensors.
2. The covariant derivative r” coincides with the partial derivative @=@S” when

applied to variants of order zero.
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3. The covariant derivative satisfies the sum and product rules.
4. The metrinilic property of the covariant derivative applies to all metrics, except

for S˛ and S˛:

r”S˛ˇ; r”S
˛ˇ D 0 (11.2)

r”"˛ˇ; r”"
˛ˇ D 0 (11.3)

r”ı
˛ˇ
�
 ; r”ı

˛
ˇ D 0 (11.4)

5. The covariant derivative commutes with contraction.

Exercise 229. Show the tensor property of the surface covariant derivative.

Exercise 230. Show the sum and product rules for the surface covariant derivative.

Exercise 231. Show the metrinilic property of the surface covariant derivative.

Exercise 232. Show commutativity with contraction of the surface covariant
derivative.

11.4 The Surface Divergence and Laplacian

The covariant derivative gives immediate rise to the surface Laplacian r˛r˛ . This
operator is often referred to as the Laplace–Beltrami operator or as the Beltrami
operator. It is particularly interesting that its geometric interpretation is not easy to
see. On the other hand, its analytical definition provided by the tensor framework is
entirely straightforward.

The Voss–Weyl formula continues to apply. The surface divergence r˛T
˛ is

given by

r˛T
˛ D 1p

S

@

@S˛

�p
ST ˛

�
: (11.5)

The Laplacian of an invariant field F is calculated by the formula

r˛r˛F D 1p
S

@

@S˛

�p
SS˛ˇ

@F

@Sˇ

�
: (11.6)

Exercise 233. Show that surface Laplacian on the surface of a sphere (10.92)–
(10.94) is given by

r˛r˛F D 1

R2 sin 	

@

@	

�
sin 	

@F

@	

�
C 1

R2 sin2 	

@2F

@
2
: (11.7)
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Exercise 234. Show that surface Laplacian on the surface of a cylinder (10.101)–
(10.103) is given by

r˛r˛F D 1

R2
@2F

@	2
C @2F

@z2
: (11.8)

Exercise 235. Show that surface Laplacian on the surface of a torus (10.107)–
(10.109) is given by

r˛r˛F D 1

.RC r cos
/2
@2F

@	2
C 1

r2 .RC r cos
/

@

@


�
.RC r cos
/

@F

@


�
:

(11.9)

Exercise 236. Show that surface Laplacian on the surface of revolution (10.115)–
(10.117) is given by

r˛r˛F D 1

r .z/
q
1C r 0 .z/2

@

@z

0
B@ r .z/q

1C r 0 .z/2
@F

@z

1
CAC 1

r .z/2
@2F

@	2
(11.10)

11.5 The Curvature Tensor

The curvature tensor arises out of the failure of the metrinilic property with respect
to the covariant basis. Expand r˛Sˇ according to definition (11.1):

r˛Sˇ D @Sˇ
@S˛

� �”˛ˇS”: (11.11)

Note that r˛Sˇ is symmetric

r˛Sˇ D rˇS˛; (11.12)

since the first term in (11.11) equals @2R=@S˛@Sˇ and the second term is propor-
tional to the Christoffel symbol �”˛ˇ which is symmetric in its lower indices.

Unlike the quantity riZj , which vanished by definition (5.56), the quantity r˛Sˇ
does not vanish. After all, a direct analogue of equation (5.56) does not exist due to
the curvature of the surface. Nevertheless, a geometric observation of great value can
be made of r˛Sˇ: each of these four vectors is orthogonal to the tangent plane. To
put it another way, while the vector r˛Sˇ does not vanish, its tangential components
do. To show this, dot the identity (11.11) with Sı:

Sı � r˛Sˇ D Sı � @Sˇ
@S˛

� �”˛ˇS” � Sı: (11.13)
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Since S” � Sı D ıı” , we find

Sı � r˛Sˇ D Sı � @Sˇ
@S˛

(11.14)

and the right-hand side vanishes by the definition (10.80). Thus,

Sı � r˛Sˇ D 0 (11.15)

and the orthogonality of r˛Sˇ to the tangent plane is established.
This geometric observation leads to the definition of the curvature tensor. Since

r˛Sˇ is normal to the plane, it must be a multiple of the normal vector N. Let that
multiple be B˛ˇ:

r˛Sˇ D NB˛ˇ: (11.16)

The variant B˛ˇ is called the curvature tensor. Dotting both sides of this identity
with N yields an explicit expression for B˛ˇ

B˛ˇ D N � r˛Sˇ (11.17)

and confirms its tensor property. Note that the sign of B˛ˇ depends on the choice of
the normal.

The curvature tensor plays a central role in the analysis of embedded surfaces.
So important is its role that we have devoted an entire chapter to its study. Having
shaken hands with it in this chapter, we part with the curvature tensor until our
in-depth investigation in Chap. 12.

11.6 Loss of Commutativity

Recall the argument by which we proved that ambient covariant derivatives
commute. We evaluated the commutator

�rirj � rjri

	
T k (11.18)

in affine coordinates where the covariant derivatives coincide with partial derivatives
and therefore commute. As a result, the commutator vanishes in affine coordinates
and, being a tensor, in all coordinates.

This argument is not available on curved surfaces since there may not exist an
affine coordinate system. As a result, commutativity is lost. Instead, the commutator
is governed by the Riemann–Christoffel tensor R”�ı˛ˇ , introduced in the ambient
space in Chap. 8. It is straightforward to show that for a contravariant tensor T ” , the
commutator takes the following form
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�r˛rˇ � rˇr˛

	
T ” D R

”

�ı˛ˇT
ı; (11.19)

where

R
”

�ı˛ˇ D @�
”

ˇı

@S˛
� @�

”

˛ı

@Sˇ
C �”˛!�

!
ˇı � �”ˇ!�!˛ı: (11.20)

Example 237. Derive equations (11.19) and (11.20).

An in-depth discussion of the Riemann–Christoffel tensor takes place in
Chap. 12.

11.7 The Covariant Derivative for Objects
with Ambient Indices

11.7.1 Motivation

The clue to the covariant derivative for objects with ambient indices comes
from differentiating an invariant field T (such as the surface normal N) and its
components T i . We are looking for an operator that satisfies the product rule and
coincides with the partial derivative when applied to variants of order zero. For an
operator r” that satisfies these properties, the following chain of identities would be
valid:

r”T D @T
@S”

D @
�
T iZi

	
@S”

D @T i

@S”
Zi C T i

@Zi
@S”

(11.21)

Apply the chain rule to the second term

r”T D @T i

@S”
Zi C T i

@Zi
@Zj

@Zj

@S”
(11.22)

and recognize that @Zi =@Zj D �kijZk and @Zj =@S” D Z
j
” :

r”T D @T i

@S”
Zi C T iZj

” �
k
ijZk: (11.23)

The right-hand side can be rewritten as

r”T D
�
@T i

@S”
CZk

”�
i
kmT

m

�
Zi : (11.24)
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Finally, if we demand that r” is metrinilic with respect to Zi , the left-hand side can
be transformed by the product rule

r”T
i Zi D

�
@T i

@S”
CZk

”�
i
kmT

m

�
Zi : (11.25)

This identity suggest the definition

r”T
i D @T i

@S”
CZk

”�
i
kmT

m (11.26)

and indeed this good guess leads to a definition that has all of the desired properties.

11.7.2 The Covariant Surface Derivative in Full Generality

Motivated by equation (11.26), we give the following definition for the covariant
surface derivative applied to a variant T ij with ambient indices:

r”T
i
j D @T ij

@S”
CZk

”�
i
kmT

m
j �Zk

”�
m
kj T

i
m: (11.27)

To give the ultimate definition, consider a variant T i˛jˇ with a fully representative
collection of indices. That definition reads

r”T
i˛
jˇ D @T i˛jˇ

@S”
CZk

”�
i
kmT

m˛
jˇ �Zk

”�
m
kj T

i˛
mˇ C �˛�!T

i!
jˇ � �!”ˇT i˛j! : (11.28)

We leave it as an exercise to prove each of the following fundamental properties.

1. The covariant derivative produces tensors out of tensors.
2. The covariant derivative r” coincides with the partial derivative @=@S” when

applied to invariants (or any variants of order zero).
3. The covariant derivative satisfies the sum and product rules.
4. The metrinilic property of the covariant derivative applies to all metrics, except

for S˛ and S˛:

r”S˛ˇ; r”S
˛ˇ D 0 (11.29)

r”"˛ˇ; r”"
˛ˇ D 0 (11.30)

r”ı
˛ˇ
�
 ; r”ı

˛
ˇ D 0 (11.31)

5. The covariant derivative commutes with contraction.
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11.8 The Chain Rule

Consider a variant field T ij defined in the ambient space. We may also consider the
restriction of T ij to the surface S and apply the covariant derivative to this restriction
by definition (11.27)

r”T
i
j D @T ij

@S”
CZk

”�
i
kmT

m
j �Zk

”�
m
kj T

i
m: (11.32)

Being a restriction of an ambient field, the function T ij .S/ can be represented by
the composition T ij .S/ D T ij .Z .S//. Therefore, the partial derivative term can be
transformed by the chain rule

r”T
i
j D @T ij

@Zk

@Zk

@S”
CZk

”�
i
kmT

m
j �Zk

”�
m
kj T

i
m: (11.33)

The object @Zm=@S” is recognized as the shift tensor Zm
” , which can now be

factored out from each term

r”T
i
j D Zk

”

 
@T ij

@Zk
C �ikmT

m
j � �mkj T im

!
: (11.34)

The quantity in parentheses is recognized as rkT
i
j and we conclude that

r”T
i
j D Zk

”rkT
i
j : (11.35)

This elegant relationship is known as the chain rule. It states that the covariant
surface derivative of the restriction of an ambient field is the projection of the
ambient covariant derivative.

The chain rule is ubiquitous in tensor calculations and has the following
immediate implication: the covariant surface derivative is metrinilic with respect
to all ambient metrics:

r”Zi ; r”Zi D 0 (11.36)

r”Zij ; r”Z
ij D 0 (11.37)

r”"ijk; r”"
ijk D 0 (11.38)

r”ı
i
j ; r”ı

ij
rs; r”ı

ijk
rst D 0: (11.39)

One of the important implications of the metrinilic property (11.37) is that ambient
indices can be juggled “across” the covariant derivative. For example, Sir”T

i D
Sir”Ti , and Si” D r”Ti implies Si” D r”T

i .

Exercise 238. Justify equations (11.36)–(11.39).
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11.9 The Formulas for r˛Z i
ˇ

and r˛N i

There are two outstanding elements on the surface, the shift tensor Zi
ˇ and the

normal N i , for which we have not yet established differentiation rules. The
metrinilic property (11.36) of the covariant derivative yields the rule for the shift
tensor. Recall the definition (11.16) of the curvature tensor:

r˛Sˇ D NB˛ˇ: (11.16)

By the product rule and the metrinilic property, we find:

r˛Sˇ D r˛

�
Zi
ˇZi

�
D r˛Z

i
ˇ Zi : (11.40)

Decompose the normal N on the right-hand side of equation (11.16) with respect
to Zi

r˛Z
i
ˇ Zi D N iB˛ˇZi : (11.41)

Equating the vector components gives the desired formula

r˛Z
i
ˇ D N iB˛ˇ: (11.42)

Contracting both sides of this equation with Ni gives an explicit expression for the
curvature tensor:

B˛ˇ D Nir˛Z
i
ˇ: (11.43)

We now turn to the normal N i . One way to derive the expression for r˛N
i is by

appealing to the explicit expression (10.38) for N i . Alternatively, we can appeal to
the two equations (10.39) and (10.41) that defineN i implicitly. We pursue the latter
approach first.

Applying the covariant derivative to equation (10.41)

NiN
i D 1; (10.41)

we find

Nir˛N
i D 0: (11.44)

Next, juggle the index i in equation (10.39)

N iZi˛ D 0 (11.45)
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and apply the covariant derivative. By the product rule,

rˇN
i Zi˛ CN irˇZi˛ D 0: (11.46)

By equation (11.43), the second term is the curvature tensor B˛ˇ . Thus,

rˇN
i Zi˛ D �B˛ˇ: (11.47)

To isolate rˇN
i , contract both sides with Z j̨

rˇN
i Zi˛Z

j̨ D �Z j̨B˛ˇ: (11.48)

By the projection equation (10.55), the left-hand side is

rˇN
j �NiN jrˇN

i D �Z˛
j B˛ˇ (11.49)

Since the second term on the left-hand side vanishes by equation (11.44), we arrive
at the ultimate expression for r˛N

i

r˛N
i D �Zi

ˇB
ˇ
˛ : (11.50)

Equation (11.50) is also known as Weingarten’s formula.

Exercise 239. Derive equation (11.44) from (10.41).

We now derive Weingarten’s formula (11.50) from the explicit expression (10.38)
for the normal. We leave as an exercise to derive the following identity

"ijk"˛ˇZ
ˇ
j Nk D Zi

˛: (11.51)

The geometric interpretation of this identity is straightforward: the cross-product-
like combination of the normal and a covariant basis element yields a tensor
orthogonal to both, that is, a corresponding contravariant basis element. This
fundamental relationship is, surprisingly, not needed often, but finds a direct
application in the following derivation.

Exercise 240. Confirm equation (11.51) by substituting an explicit expression
for Nk .

An application of the covariant derivative to equation (10.38)

N i D 1

2
"ijk"˛ˇZ

˛
j Z

ˇ

k (10.38)
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yields

r”N
i D 1

2
"ijk"˛ˇ

�
r”Z

˛
j Z

ˇ

k CZ˛
j r”Z

ˇ

k

�
: (11.52)

The terms in parentheses yield curvature tensors by equation (11.42):

r”N
i D 1

2
"ijk"˛ˇ

�
NjB

˛
” Z

ˇ

k CZ˛
j NkB

ˇ
”

�
: (11.53)

Multiply out the right-hand side

r”N
i D 1

2
"ijk"˛ˇNjB

˛
” Z

ˇ

k C 1

2
"ijk"˛ˇZ

˛
j NkB

ˇ
” : (11.54)

The two terms are actually the same, which can be seen after a few index-renaming
steps. Therefore,

r”N
i D "ijk"˛ˇNjB

˛
” Z

ˇ

k (11.55)

and Weingarten’s formula (11.50) follows by an application of equation (11.51).

11.10 The Normal Derivative

Consider an invariant function u defined in the ambient space. At the points on an
embedded surface S , we may be interested in the directional derivative of u along the
normal Nk . The directional derivative in this special direction is called the normal
derivative and is often denoted by @u=@n. According to equation (2.11), the normal
derivative is given by

@u

@n
D N iriu: (11.56)

The normal derivative is a ubiquitous concept in applied mathematics, physics, and
engineering.

According to equation (11.56), the normal derivative @u=@n can be thought of as
the normal component of the ambient gradient riu. Suppose that normal derivative
@u=@n and the covariant surface derivative r˛u are known at a particular point on S .
Then the full ambient derivative riu can be reconstructed by the formula

riu D Z˛
i r˛u CNi

@u

@n
: (11.57)
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To demonstrate equation (11.57), rename the index i in definition (11.56) and
multiply both sides by Ni ,

Ni
@u

@n
D NiN

jrj u: (11.58)

By the projection rule (10.55),

Ni
@u

@n
D
�
ı
j
i �Z˛

i Z
j
˛

�
rj u: (11.59)

Expanding, we find by the chain rule

Ni
@u

@n
D riu �Z˛

i r˛u: (11.60)

which is equivalent to equation (11.57).
A number of beautiful relationships exist that relate the second-order ambient

and surface covariant derivatives of an ambient variant. Perhaps the most commonly
encountered one is

N iN jrirj u D rir iu � r˛r˛u C B˛
˛N

iriu: (11.61)

The derivation of this equation is left as an exercise. Equation (11.61) has a number
of valuable interpretations. One of them is the relationship of the surface Laplacian
r˛r˛u to the ambient Laplacian rir iu. This perspective can be brought to the
forefront by writing equation (11.61) in the form

r˛r˛u D rir iu �N iN jrirj u C B˛
˛N

iriu: (11.62)

Exercise 241. Derive equation (11.61). Hint: Transform the surface Laplacian
r˛r˛u by the chain rule (11.35) starting with the innermost covariant derivative
r˛ .

Exercise 242. Show that

@2

@n2
D N iN jrirj : (11.63)

You may find it helpful to refer the ambient space to an affine coordinate system.
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11.11 Summary

In this chapter, we constructed the covariant derivative on embedded surfaces. When
applied to objects with surface indices, the definition of the covariant derivative
was analogous to that in the ambient Euclidean space. However, since a complete
analogy in the definition of the Christoffel symbol is not possible, two properties—
the metrinilic property and commutativity—had to be modified. Both alterations are
associated with curvature. The loss of the metrinilic property with respect to the
covariant basis led to the introduction of the curvature basis. Loss of commutativity
led to the nontrivial Riemann–Christoffel tensor and an alternative introduction of
Gaussian curvature.



Chapter 12
Curvature

12.1 Preview

This chapter is devoted to the study of curvature. This is an exciting and beautiful
topic. The highlight of this chapter, and perhaps the entire book is Gauss’s Theorema
Egregium, or the Remarkable Theorem.

The first half of this chapter is devoted to the intrinsic analysis of surfaces.
Intrinsic analysis deals with quantities derived from the metric tensor and its
partial derivatives. The central object in the intrinsic perspective in the Riemann–
Christoffel tensor R˛ˇ�ı that arises in the analysis of the commutator r˛rˇ �
rˇr˛ . The second half of the chapter focuses on the curvature tensor B˛ˇ , an
extrinsic object because it depends on the way in which the surface is embedded
in the ambient space. Theorema Egregium relates the Riemann–Christoffel and the
curvature tensor and thus links the intrinsic and the extrinsic perspectives.

It is exciting to have the opportunity to come face to face with Carl Friedrich
Gauss (Fig. 12.1) and his protege Bernhard Riemann, two of the greatest mathe-
maticians in history. These amazing scientists spent their entire lives pondering the
concept of space and curvature and attained a depth of understanding unmatched to
this day. The equations contained in this chapter flow effortlessly from one to the
next and their beauty is a tribute to the remarkable achievements of those great men
and their predecessors.

12.2 The Riemann–Christoffel Tensor

We begin with a discussion of the intrinsic elements of the surface. In the previous
chapter, we undertook the critical question of whether covariant surface derivatives
commute. In this chapter, we discover that the general answer is no.

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 12, © Springer Science+Business Media New York 2013
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Fig. 12.1 Carl Friedrich
Gauss (1777–1855) was a
pivotal figure in differential
geometry and mathematics in
general

The commutator r˛rˇ�rˇr˛ applied to a variant T � with a surface superscript
is governed by the rule

�r˛rˇ � rˇr˛

	
T � D R

�

�ı˛ˇT
ı; (11.19)

where the Riemann-Christoffel tensor R��ı˛ˇ is given by

R
�

�ı˛ˇ D @�
�

ˇı

@S˛
� @�

�

˛ı

@Sˇ
C ��˛!�

!
ˇı � ��ˇ!�!˛ı: (11.20)

Introduce the Riemann–Christoffel tensor R�ı˛ˇ with the lowered first index

R�ı˛ˇ D S�!R
!�ı˛ˇ: (12.1)

Exercise 243. Show that

R�ı˛ˇ D @��;ˇı

@S˛
� @��;˛ı

@Sˇ
C �!;�ˇ�

!
˛ı � �!;�˛�!ˇı: (12.2)

In the ambient Euclidean space, the analogous expressions are found in equations
(8.131) and (8.130). However, due to the Euclidean nature of the ambient space, the
ambient Riemann–Christoffel tensor vanishes and therefore covariant derivatives
commute. The vanishing of the Riemann–Christoffel tensor is shown in two ways.
The first approach relies on the evaluation of the Riemann–Christoffel tensor in
Cartesian coordinates. The second approach, outlined in Exercise 146, relies on
substituting an explicit expression for the Christoffel symbol into the definition of
the Riemann–Christoffel tensor. Neither approach carries over to curved surfaces:
the surface may not admit a Cartesian coordinate system and the partial derivative
of the contravariant basis may have a normal component and therefore may not be
re-expressed in the contravariant basis.
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From the definition (11.19) and equation (11.20), it can be easily seen that R�ı˛ˇ
is antisymmetric in ˛ and ˇ

R�ıˇ˛ D �R�ı˛ˇ; (12.3)

as well as � and ı

Rı�˛ˇ D �R�ı˛ˇ: (12.4)

A little bit more work is required to show the R˛ˇ�ı is symmetric with respect to
switching the pairs of indices ˛ˇ and �ı:

R�ı˛ˇ D R˛ˇ�ı: (12.5)

Exercise 244. Show that

R˛�˛�ı D 0: (12.6)

Exercise 245. Show relationships (12.3)–(12.5).

Exercise 246. Show that equation (12.4) follows from equations (12.3) and (12.5).

Exercise 247. The Ricci tensor R˛ˇ is defined as

R˛ˇ D R
�

�˛�ˇ: (12.7)

Its trace

R D R˛˛ (12.8)

is called the scalar curvature. Show that the Ricci tensor is symmetric.

Exercise 248. The Einstein tensor G˛ˇ is defined by

G˛ˇ D R˛ˇ � 1

2
RS˛ˇ: (12.9)

Show that the Einstein tensor is symmetric.

Exercise 249. Show that, for two-dimensional manifolds, the trace G˛
˛ of the

Einstein tensor G˛ˇ vanishes.

Exercise 250. Show that for a covariant tensor T� , the commutator relationship
reads

�r˛rˇ � rˇr˛

	
T� D �Rı��˛ˇTı: (12.10)
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Exercise 251. Show that covariant derivatives commute when applied to invariants
and variants with ambient indices

�r˛rˇ � rˇr˛

	
T D 0 (12.11)�r˛rˇ � rˇr˛

	
T i D 0 (12.12)�r˛rˇ � rˇr˛

	
Ti D 0: (12.13)

Exercise 252. Show the first Bianchi identity

R˛ˇ�ı CR˛�ıˇ CR˛ıˇ� D 0: (12.14)

Exercise 253. Show the second Bianchi identity

r"R˛ˇ�ı C r�R˛ˇı" C rıR˛ˇ"� D 0: (12.15)

Equations (12.12) and (12.13) can be shown rather easily by a direct application
of the definition of the covariant derivative. However, there is a more elegant way of
showing this. For a variant T i , form the vector T D T iZi . By equation (12.11),

r˛rˇT � rˇr˛T D 0: (12.16)

Since the surface covariant derivative is metrinilic with respect the ambient basis
Zi , we have

�r˛rˇT
i � rˇr˛T

i
	

Zi D 0 (12.17)

and equation (12.12) follows.
So far we have analyzed the commutator r˛rˇ�rˇr˛ for variants of order one.

Applying the commutator to variants of order greater than one results in a sum of
appropriate Riemann–Christoffel terms for each surface index. For example, for a
tensor T i�jı with a representative collection of indices, the commutator is given by

�r˛rˇ � rˇr˛

	
T
i�

jı D R
�

�!˛ˇT
i!
jı �R!�ı˛ˇT i�j! : (12.18)

Equation (12.18) shows that, from the index manipulation point of view, the role of
the Riemann–Christoffel tensor in the commutator is similar to that of the Christoffel
symbol in the covariant derivative: superscripts are contracted with the second index
of CR��ı˛ˇ and subscripts are contracted with the first index of �Rı��˛ˇ .

To show equation (12.18) for a variant T �ı (dropping the less interesting ambient
indices), define

T � D T
�

ı S
ı; (12.19)
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where S! is an arbitrary variant. Since

r˛rˇT
� D r˛rˇT

�

ı S
ı C rˇT

�

ı r˛S
ı C r˛T

�

ı rˇS
ı C T

�

ı r˛rˇS
ı (12.20)

and the sum of the middle two terms on the right-hand side is symmetric in ˛ and
ˇ, we find

r˛rˇT
� � rˇr˛T

� D �r˛rˇT
�

ı � rˇr˛T
�

ı

	
Sı C T

�

ı

�r˛rˇS
ı � rˇr˛S

ı
	
;

(12.21)

or
�r˛rˇT

�

ı � rˇr˛T
�

ı

	
Sı D �

�

�!˛ˇT
! � �ı�!˛ˇS!T �ı : (12.22)

Switching the names of the indices � and ! in the last term, we find
�r˛rˇT

�

ı � rˇr˛T
�

ı

	
Sı D �

�

�!˛ˇT
!
ı S

ı � �!�ı˛ˇT �! Sı: (12.23)

Since S! is arbitrary, equation (12.18) is confirmed.

12.3 The Gaussian Curvature

For a two-dimensional surface, equations (12.3)–(12.5) show that the Riemann–
Christoffel symbol has a single degree of freedomR1212 and the four nonzero entries
are ˙R1212. Thus, the Riemann–Christoffel tensor can be captured by the formula

R�ı˛ˇ D R1212e�ıe˛ˇ: (12.24)

Switching from permutation systems to Levi-Civita symbols, we find

R�ı˛ˇ D R1212

S
"�ı"˛ˇ: (12.25)

The invariant quantity

K D R1212

S
(12.26)

is known as the Gaussian curvature K. It is one of the most fundamental and
interesting characteristics of a surface. In terms of the Gaussian curvature K, the
Riemann–Christoffel tensor is given by

R�ı˛ˇ D K"�ı"˛ˇ: (12.27)
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Exercise 254. Derive the following explicit expression for K:

K D 1

4
"�ı"˛ˇR�ı˛ˇ: (12.28)

In particular, equation (12.28) shows that K is a tensor.

Exercise 255. Show that

R�ı˛ˇ D K
�
S˛�Sˇı � S˛ıSˇ�

	
: (12.29)

Exercise 256. Show that the Gaussian curvature K is also given by

K D 1

2
R
˛ˇ

��˛ˇ : (12.30)

Equivalently,

K D 1

2
R˛˛; (12.31)

where R˛ˇ is the Ricci tensor. In other words, for a two-dimensional surface, the
Gaussian curvature is half of the scalar curvature.

12.4 The Curvature Tensor

We now turn to the extrinsic elements on the surface. The primary extrinsic object is
the curvature tensor B˛ˇ (also known as the extrinsic curvature tensor) introduced
in Chap. 11 in equation (11.16):

r˛Sˇ D NB˛ˇ: (11.16)

In component form, this equation reads

r˛Z
i
ˇ D N iB˛ˇ: (12.32)

The combination N iB˛
˛ is called the curvature normal. The vector invariant NB˛

˛

may be referred to as the vector curvature normal.
Equation (11.16) can be written in the following elegant way

r˛rˇR D NB˛ˇ: (12.33)

Thus, the surface Laplacian of the position vector R yields the vector curvature
normal of the surface:

r˛r˛R D NB˛
˛ : (12.34)
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Contract both sides of equation (12.32) with Ni to obtain an explicit expression
for B˛ˇ:

B˛ˇ D Nir˛Z
i
ˇ: (12.35)

Recall that B˛ˇ depends on the choice of normal. The combination N iB˛ˇ is
independent of that choice.

Exercise 257. Show that B˛ˇ is symmetric

B˛ˇ D Bˇ˛: (12.36)

The traceB˛
˛ of the curvature tensorB˛

ˇ is the mean curvature. Another important
invariant associated with the curvature tensor is the determinant jB �� j of B˛

ˇ . The
trace B˛

˛ and the determinant jB �� j are the two invariants associated with the tensor
B˛
ˇ in the linear algebra sense of similarity transformations in a two-dimensional

space. These invariants can be expressed in terms of the eigenvalues �1 and �2 of
B˛
ˇ which are real since B˛ˇ is symmetric. The quantities �1 and �2 are called the

principal curvatures of the surface. Their geometric interpretation is discussed in
Chap. 13 on curves. In terms of the principal curvatures, B˛

˛ and jB �� j are given by

B˛
˛ D �1 C �2 (12.37)

jB �� j D �1�2: (12.38)

Equation (12.37) is the reason behind the word mean in mean curvature. Some
texts define the mean curvature as the average .�1 C �2/ =2. This definition certain
advantages over our definition in a few situations. For example the mean curvature
of a sphere according to our definition is �2=R. In the alternative definition, the
value is �1=R, which may be more consistent with our intuition of curvature.
However, we prefer our definition since in numerous applications, and particularly
in the calculus of moving surfaces, it is the quantity B˛

˛ (rather than B˛
˛ =2) that is

most frequently encountered.
The metric tensor S˛ˇ is sometimes referred to as the first groundform of the

surface and the curvature tensor B˛ˇ is the second groundform. There is also the
third groundform C˛

ˇ defined as the “matrix square” of the curvature tensor

C˛
ˇ D B˛

� B
�

ˇ : (12.39)

The third groundform is encountered frequently in applications.
The extrinsic nature of the curvature tensor can be illustrated by forming a

cylinder out of a sheet of paper. When the sheet of paper is flat, the curvature tensor
B˛ˇ vanishes since r˛Sˇ does not have a normal component. When the sheet is
curved into a cylinder without stretching and each material particle is allowed to
keep its coordinates, the metric tensor and its derivatives are unchanged. This is
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because the metric tensor can be calculated from the unchanged lengths of curves
embedded in the surface. Meanwhile, the curvature tensor does change: the mean
curvature of the cylinder with respect to the exterior normal is �1=R. Therefore,
the curvature tensor depends on the way in which the surface is embedded in the
ambient Euclidean space.

Exercise 258. Show that the following relationship holds at points of zero mean
curvature:

B˛
ˇB

ˇ
˛ D �2 jB �� j : (12.40)

12.5 The Calculation of the Curvature Tensor for a Sphere

As an illustration, we calculate the curvature tensor for a sphere of radius R. In
Chap. 10, we calculated the shift tensor, the metric tensors and the Christoffel
symbols for a sphere referred to Cartesian coordinates in the ambient space and
the standard spherical coordinates on the surface. The identity

B˛ˇ D �Zi˛rˇN
i (12.41)

is a form Weingarten’s formula (11.50) and offers a convenient way for evaluating
the curvature tensor. The advantage of equation (12.41) is that it does not require the
use of the surface Christoffel symbol and, additionally, does not produce any “three-
dimensional” objects such as r˛Z

i
ˇ which cannot be represented by matrices. Recall

that Zi˛ is given by the matrix

M1 D
2
4R cos 	 cos
 �R sin 	 sin

R cos 	 sin
 R sin 	 cos


�R sin 	 0

3
5 : (12.42)

The object rˇN
i D @N i=@Sˇ is given by the matrix

M2 D
2
4 cos 	 cos
 � sin 	 sin


cos 	 sin
 sin 	 cos

� sin 	 0

3
5 : (12.43)

Therefore, the curvature tensor B˛ˇ is represented by the matrix product �MT
1 M2

B˛ˇ D
��R 0

0 �R sin2 	

�
: (12.44)

The curvature tensor B˛
ˇ is obtained by contraction with the contravariant metric

tensor S˛ˇ in equation (10.97)

B˛
ˇ D

�� 1
R

0

0 � 1
R

�
: (12.45)
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Thus, the mean curvature B˛
˛ is

B˛
˛ D � 2

R
: (12.46)

Finally, the contravariant curvature tensor B˛ˇ is given by

B˛ˇ D
"

� 1
R3

0

0 � 1

R3 sin2 	

#
: (12.47)

12.6 The Curvature Tensor for Other Common Surfaces

The cylinder (10.101)–(10.103)

B˛ˇ D
��R 0

0 0

�
I B˛

ˇ D
�� 1

R
0

0 0

�
I B˛ˇ D

�� 1
R3
0

0 0

�
(12.48)

B˛
˛ D � 1

R
(12.49)

Cone with angle �:

B˛ˇ D
�
r cos� sin� 0

0 0

�
I B˛

ˇ D
�� cot�

r
0

0 0

�
I B˛ˇ D

"
� cos�
r3 sin3 �

0

0 0

#

(12.50)

B˛
˛ D �cot�

r
(12.51)

The torus (10.107)–(10.109):

B˛ˇ D
�� .RC r cos
/ cos
 0

0 �r
�

(12.52)

B˛
ˇ D

"
� cos

RCr cos
 0

0 �r�1

#
(12.53)

B˛ˇ D
"

� cos

.RCr cos
/3

0

0 �r�3

#
(12.54)

B˛
˛ D � RC 2r cos


r .RC r cos
/
(12.55)
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The surface of revolution (10.115)–(10.117):

B˛ˇ D
2
4� r.z/p

1Cr 0.z/2
0

0 r 00.z/p
1Cr 0.z/2

3
5 (12.56)

B˛
ˇ D

2
4� 1

r.z/
p
1Cr 0.z/2

0

0 r 00.z/

.1Cr 0.z/2/
3=2

3
5 (12.57)

B˛ˇ D
2
4� 1

r3.z/
p
1Cr 0.z/2

0

0 r 00.z/

.1Cr 0.z/2/
5=2

3
5 (12.58)

B˛
˛ D r 00 .z/ r .z/ � r 0 .z/2 � 1

r .z/
q
1C r 0 .z/2

(12.59)

Exercise 259. Show that the catenoid given by r .z/ D a cosh .z � b/ =a has zero
mean curvature.

12.7 A Particle Moving Along a Trajectory Confined
to a Surface

This section parallels Sect. 8.9, in which we analyzed the motion of a particle along
a trajectory in a Euclidean space. The present problem is substantially richer since
the acceleration of the particle depends on the curvature tensor of the surface. The
content of this section is presented in the form of exercises.

Exercise 260. Suppose that a particle confined to the surface moves along the
trajectory � .t/ given by

S˛ D S˛ .t/ : (12.60)

Show that its velocity V is given by

V D V ˛S˛ (12.61)

where

V ˛ D dS˛ .t/

dt
: (12.62)

Hint: R .t/ D R .S .t//.
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Exercise 261. Show that the acceleration A of the particle is given by

A D ıV ˛

ıt
S˛ C NB˛ˇV ˛V ˇ; (12.63)

where

ıV ˛

ıt
D dV ˛

dt
C �˛ˇ�V

ˇV � : (12.64)

Conclude that ıV ˛=ıt is a tensor with respect to coordinate transformations on the
surface. Also note the term NB˛ˇV ˛V ˇ known as the centripetal acceleration.

Exercise 262. Use this problem as an opportunity to develop a new ı=ıt -calculus
motivated by the definition (12.64). For a general tensor T ˛ˇ , define the ı=ıt -
derivative along the trajectory as follows

ıT ˛ˇ

ıt
D dT ˛ˇ

dt
C V ��˛�!T

!
ˇ � V ��!�ˇT

˛
! : (12.65)

This derivative is also known as the intrinsic derivative.

Exercise 263. Show that the ı=ıt -derivative satisfies the tensor property.

Exercise 264. Show that the ı=ıt -derivative satisfies the sum and product rules.

Exercise 265. Show that the ı=ıt -derivative satisfies the chain rule

ıT ˛ˇ

ıt
D @T ˛ˇ .t; S/

@t
C V �r�T

˛
ˇ (12.66)

for trajectory restrictions of time-dependent surface tensors T ˛ˇ .

Exercise 266. Conclude that the ı=ıt -derivative is metrinilic with respect to all the
surface metrics, except S˛ and S˛ .

Exercise 267. Show that

ıS˛
ıt

D NV �B�˛: (12.67)

Exercise 268. Show that ı=ıt commutes with contraction.

Exercise 269. Use the newly developed calculus to rederive equation (12.63) and
to derive the following equation for the jolt J:

J D
�
ı2V ˛

ıt2
� B˛

ˇB�ıV
ˇV �V ı

�
S˛ C

�
3B˛ˇ

ıV ˛

ıt
V ˇ C r˛Bˇ�V

˛V ˇV �

�
N:

(12.68)
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12.8 The Gauss–Codazzi Equation

Apply the general commutator equation (12.18) to the shift tensor Zi
�

r˛rˇZ
i
� � rˇr˛Z

i
� D �Rı��˛ˇZi

ı: (12.69)

By equation (12.32), we find

r˛

�
N iBˇ�

	 � rˇ

�
N iB˛�

	 D �Rı��˛ˇZi
ı: (12.70)

Applications of the product rule and Weingarten’s formula (11.50) yield

�Zi
ıB

ı
˛Bˇ� CZi

ıB
ı
ˇB˛� CN ir˛Bˇ� �N irˇB˛� D �Rı��˛ˇZi

ı: (12.71)

This equation is called the Gauss–Codazzi equation. Its normal projection is known
as the Codazzi equation and its tangential projection is the celebrated Theorema
Egregium discussed in the following section.

Contract both sides of equation (12.71) with the normal Ni to obtain the Codazzi
equation:

r˛Bˇ� � rˇB˛� D 0: (12.72)

The Codazzi equation states that r˛Bˇ� is symmetric with respect to ˛ and ˇ

r˛Bˇ� D rˇB˛� : (12.73)

Since the curvature tensor is symmetric, the Codazzi equation tells us that r˛Bˇ� is
fully symmetric with respect to its indices.

12.9 Gauss’s Theorema Egregium

We have arrived at one of the most beautiful relationships in differential geometry:
Gauss’s Theorema Egregium, translated from Latin as the Remarkable Theorem. It
is contained as the tangential component in equation (12.71) and can be revealed by
contracting both sides with Z!

i (and subsequently renaming ! ! ı):

Bı
˛Bˇ� � Bı

ˇB˛� D Rı��˛ˇ (12.74)

This celebrated equation is also known as the Gauss equation of the surface. It
usually appears in the form with lowered indices:

R�ı˛ˇ D B˛�Bˇı � Bˇ�B˛ı: (12.75)
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In Gauss’s own words: “Thus, the formula of the preceding article leads itself to
the remarkable Theorem. If a curved surface is developed upon any other surface
whatever, the measure of curvature in each point remains unchanged.”

Theorema Egregium makes the following powerful statement: the combination
B˛�Bˇı � Bˇ�B˛ı , being the Riemann–Christoffel tensor, is intrinsic. That is, in
can be expressed in terms of the covariant metric S˛ˇ and its derivatives. In effect, it
means that the object B˛�Bˇı � Bˇ�B˛ı can be calculated by measuring distances
on the surfaces.

We will now derive several elegant equivalents of Theorema Egregium. Recall
equation (12.28), in which the Riemann–Christoffel tensor is expressed in terms of
the Gaussian curvature K

R�ı˛ˇ D K"˛ˇ"�ı: (12.28)

Equation (12.28) yields

B˛�Bˇı � Bˇ�B˛ı D K"˛ˇ"�ı; (12.76)

as well as an explicit formula for the Gaussian curvature in terms of the curvature
tensor

K D 1

4
"˛ˇ"�ı

�
B˛�Bˇı � Bˇ�B˛ı

	
: (12.77)

Multiply the right-hand side of (12.77) and express the Levi-Civita symbols in terms
of the permutation systems e˛ˇ and e�ı:

K D 1

4S
e˛ˇe�ıB˛�Bˇı � 1

4S
e˛ˇe�ıBˇ�B˛ı: (12.78)

One easily recognizes that each of the two terms on the right-hand side equals
.2S/�1 jB��j, where jB��j denotes the determinant of the curvature tensor B˛ˇ .
Therefore,

K D S�1 jB��j : (12.79)

Since S�1 is the determinant of the contravariant metric tensor S˛ˇ , we find

K D jS ��j jB��j : (12.80)

By the multiplication property of the determinant (9.28), we arrive at the ultimate
expression of Theorema Egregium:

K D jB �� j : (12.81)
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In words, Gaussian curvature equals the determinant of the curvature tensor B˛
ˇ . In

particular, Gaussian curvature equals the product of the principal curvatures

K D �1�2: (12.82)

Now, consider another way of manipulating equation (12.76)

B˛�Bˇı � Bˇ�B˛ı D K"˛ˇ"�ı: (12.76)

Raise the indices ˛ and ˇ and contract ˛ with �

B˛
˛B

ˇ

ı � Bˇ
˛ B

˛
ı D K"˛ˇ"˛ı: (12.83)

Since "˛ˇ"˛ı D ı
ˇ

ı , we find

B˛
˛B

ˇ

ı � Bˇ
˛ B

˛
ı D Kı

ˇ

ı : (12.84)

This new form of Theorema Egregium relates the first, second, and third ground-
forms of the surface.

C˛ˇ D HB˛ˇ �KS˛ˇ: (12.85)

Exercise 270. Show that the Gaussian curvature of the cylinder (10.101)–
(10.103) is zero:

K D 0: (12.86)

Exercise 271. Show that the Gaussian curvature of a cone is zero:

K D 0: (12.87)

Exercise 272. Show that the Gaussian curvature of the sphere (10.92)–(10.94) is

K D 1

R2
: (12.88)

Exercise 273. Show that the Gaussian curvature of the torus (10.107)–(10.109) is

K D cos


r .RC r cos
/
: (12.89)

Exercise 274. Show that the Gaussian curvature of the surface of revolution
(10.115)–(10.117) is

K D � r 00.z/

r .z/
�
1C r 0 .z/2

�2 : (12.90)
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12.10 The Gauss–Bonnet Theorem

The Gauss–Bonnet theorem is a fundamental result in differential geometry and
topology. It states that for a closed surface, the total curvature, defined as the integral
of the Gaussian curvature K, depends on the genus of the surface and not its shape.
The genus g of a surface is the number of topological holes. For example, the genus
of a sphere is zero and the genus of a torus is one. According to the Gauss–Bonnet
theorem, the total curvature is 4� .1 � g/:

Z
S

KdS D 4� .1 � g/ : (12.91)

In particular, the total curvature is 4� for any surface of genus zero and 0 for any
surface of genus one. In Chap. 17, we discuss the Gauss–Bonnet theorem in greater
detail and give a novel proof based on the calculus of moving surfaces.

Exercise 275. Verify the Gauss–Bonnet theorem for a sphere. That is

Z
S

KdS D 4�: (12.92)

Exercise 276. Verify the Gauss–Bonnet theorem for a torus. That is

Z
S

KdS D 0: (12.93)

12.11 Summary

This chapter, devoted to curvature, was one of the most exciting to write. Curvature
is not only an intriguing geometric concept, but also the source of most of the
analytical challenges that make tensor calculus an indispensable tool of differential
geometry. Armed with the tensor calculus framework, we had hardly any difficulties
with any of the analytical calculations. This is truly a tribute to the power of
the tensor technique. Interestingly, all of the results discussed in this chapter
were known to Gauss and Riemann. And these great mathematicians did not
have contemporary techniques at their disposal, which makes their achievements
all the more remarkable.



Chapter 13
Embedded Curves

13.1 Preview

In this chapter, we apply the methods of tensor calculus to embedded curves. In
some ways curves are similar to surfaces and in some ways they are different.
Of course, our focus is on the differences. When embedded in Euclidean spaces
of dimension greater than two, curves are not hypersurfaces and therefore do not
have a well-defined normal N and curvature tensor B˛ˇ . Furthermore, a number of
interesting features of curves can be attributed to their one-dimensional nature. For
example, curves are intrinsically Euclidean: they admit Cartesian coordinates (arc
length) and their Riemann–Christoffel tensor vanishes. Other properties that stem
from the curves’ one-dimensional nature are captured by the Frenet formulas.

We also consider curves embedded in two-dimensional surfaces which are,
in turn, embedded in the ambient Euclidean space. Curves embedded in two-
dimensional surfaces are hypersurfaces with respect to that embedding. Therefore,
much of our discussion of general hypersurfaces carries over to curves embedded
in surfaces. However, the ambient surfaces are not Euclidean! This gives us an
opportunity to discuss elements of differential geometry from a Riemannian point
of view.

13.2 The Intrinsic Geometry of a Curve

Curves are intrinsically Euclidean. In analytical terms, the Riemann–Christoffel
tensor vanishes for all curves. While we demonstrate this below, it is also clear
from geometric intuition. A curve can be parameterized by its arc length, which is
equivalent to introducing a Cartesian coordinate system. To convince yourself of
this, imagine the curve as an inextensible string with etched–in arc length coordi-
nates. Suppose now that the string is pulled into a straight line. Since the string is
inextensible, no part of it is stretched or compressed. Thus the transformation was

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 13, © Springer Science+Business Media New York 2013
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216 13 Embedded Curves

isometric—in other words, all distances along the curve are preserved. Now that the
string is straight, it is clearly a Euclidean space referred to Cartesian coordinates.
However, to an intrinsic observer only capable of measuring distances along the
curve, nothing has changed. Therefore, the original curve is also Euclidean.

13.3 Different Parametrizations of a Curve

Curves are parametrized by a single variable often taken to be the (signed) arc
length s. Most, if not all, classical texts approach curves in this way. The arc length
approach has a number of advantages, not the least of which is the clear geometric
interpretation. For example, the quantity

T D dR .s/
ds

; (13.1)

is the unit tangent. Could there be a more natural object associated with a
curve? However, the arc length approach goes very much against the spirit of
our subject. We have passionately advocated against choosing special coordinate
systems in deriving general results. The reasons against doing so were outlined
for general Euclidean spaces in Chap. 3. Those reasons remain valid for curves.
More practically, what does one do in situations where arc length is an inconvenient
parameter? In fact, for most curves, it may be quite difficult to come up with the arc
length parametrization. For example, consider the ellipsoidal spiral

x .t/ D A cos t (13.2)

y .t/ D B sin t (13.3)

z .t/ D Ct: (13.4)

To come up with an arc length parameterization, one would need to calculate the
integral

s .t/ D
Z t

0

p
A2 sin2 t 0 C B2 cos2 t 0 C C2dt 0; (13.5)

and then invert the resulting function of t to obtain t .s/. Clearly, this is not a
desirable approach in most practical applications.

We therefore refer the curve to an arbitrary coordinate system. The coordinate
variable is denoted by U 1. Despite the fact that there is a single dimension, we
add an index to the independent variable in order to preserve the tensor notation.
Furthermore, we use capital Greek letters to represent the value 1. Thus, U 1 may be
referred to as Uˆ or U‰ . This allows us to draw a close parallel between curves and
surfaces and to reap full benefits of the tensor calculus framework.
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13.4 The Fundamental Elements of Curves

Refer the ambient space to coordinates Zi and that the embedded curve to the
coordinate Uˆ:

Zi D Zi .U / : (13.6)

The shift tensor Zi
ˆ is obtained by partial differentiation

Zi
ˆ D @Zi

@Uˆ
: (13.7)

As with embedded surfaces, a variant is considered a tensor if it changes according
to the tensor rule with respect to changes of both coordinate systems.

The covariant basis Uˆ, consisting of a single vector, is defined by

Uˆ D @R .U /
@Uˆ

(13.8)

and is related to the ambient basis Zi by contraction with the shift tensor

Uˆ D ZiZi
ˆ: (13.9)

The covariant metric tensor Uˆ‰ , a single number which could be thought of as a
1 � 1 matrix, is defined by the dot product

Uˆ‰ D Uˆ � U‰: (13.10)

It is related to the ambient metric tensor Zij by a double contraction with the shift
tensor:

Uˆ‰ D ZijZ
i
ˆZ

j
‰: (13.11)

The contravariant metric tensor Uˆ‰ is the “matrix” inverse of Uˆ‰:

U‚ˆU
ˆ‰ D ı‰‚: (13.12)

Finally, the contravariant basis Uˆ is given by

Uˆ D Uˆ‰U‰: (13.13)

The object U , defined as the determinant of the covariant metric tensor

U D jU��j
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is a relative invariant of weight 2. It is given explicitly by the formula

U D Zij
dZi

dU 1

dZj

dU 1
: (13.14)

The length element or the line element
p
U is the square root ofU , and it is a relative

invariant of weight 1. The length of curve s corresponding to the coordinate ranging
from a and b is given by the integral

s D
Z b

a

p
UdU: (13.15)

This equation was derived in Sect. 5.8.
The Levi-Civita symbols "ˆ and "ˆ are defined by

"ˆ D p
U (13.16)

"ˆ D 1p
U
: (13.17)

The line element
p
U is a relative tensor of weight 1 when treated as a variant of

order zero. But it is an absolute tensor when treated as a variant of order one.
In Chap. 9, we discussed the Levi-Civita in two or more dimensions. Equations

(13.16) and (13.17) are a generalization to one dimension. For curves, the Levi-
Civita symbol loses its skew-symmetric characteristics. Nevertheless, it remains
a very useful object. For example, the combination "ˆUˆ is an invariant. It must
therefore be the unit tangent.

Exercise 277. Explain why "ˆUˆ is the unit tangent. Hint: Consider U 1 D s.

The Christoffel symbol �‚ˆ‰ is defined by

�‚ˆ‰ D U‚ � @Uˆ

@U‰
: (13.18)

The Christoffel symbol is expressed alternatively by

�‚ˆ‰ D � @U‚

@U‰
� Uˆ: (13.19)

In terms of the metric tensor, the Christoffel symbol is given intrinsically by the
usual identity

�‚ˆ‰ D 1

2
U‚�

�
@U�ˆ

@U‰
C @U�‰

@Uˆ
� @Uˆ‰

@U�

�
: (13.20)
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When a curve is parameterized by the arc length s, the values of the fundamental
objects are consistent with the Cartesian nature of such parameterization. Namely,
with respect to the arc length s,

Uˆ‰ D Œ1� I Uˆ‰ D Œ1� I �‚ˆ‰ D 0: (13.21)

13.5 The Covariant Derivative

The covariant derivative r‚ applied to a tensorW iˆ
j‰ with a representative collection

of indices is entirely analogous to the surface covariant derivative:

r‚W
iˆ
j‰ D @W iˆ

j‰

@U‚
CZk

‚�
i
kmW

mˆ
j‰ �Zk

‚�
m
kjW

iˆ
m‰ C�ˆ‚�W

i�
j‰ ���‚‰W iˆ

j�: (13.22)

This covariant derivative r‚ has all of the same properties as the surface covariant
derivative described in Chap. 11. In particular, it produces tensor outputs for tensor
inputs, satisfies the sum and the product rules, commutes with contraction and obeys
the chain rule for curve restrictions W i

j of ambient variants

r‚W
i
j D Zk

‚rkW
i
j : (13.23)

There is nothing that can be said about the covariant derivative r‚ that was not
said in Chap. 11 on the covariant surface derivative r˛ . The definition (13.22) does
not rely on the one-dimensional nature of curves and is therefore valid for subspaces
of arbitrary dimension. We highlight an important difference: since a curve is not
a hypersurface with respect to the ambient space and there is no a priori normal
direction, the quantity rˆU‰ cannot be used to define a curvature tensorBˆ‰ . Thus,
our approach to analyzing curvature must be modified. This is accomplished in the
next section.

We can take advantage of the one-dimensional nature of curves and define a new
differential operator that produces tensors of the same order as the argument. The
new operator rs is defined by the combination

rs D "‚r‚; (13.24)

that is

rsW
iˆ
j‰ D "‚r‚W

iˆ
j‰ : (13.25)

The following exercises describe the analytical properties of this operator.
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Exercise 278. Show that rs coincides with d=ds for invariants

rsW D dW

ds
: (13.26)

Exercise 279. Show that rs satisfies the sum and product rules.

Exercise 280. Show that rs commutes with contraction.

Exercise 281. Show that rs satisfies the following chain rule for curve restrictions
of ambient variants

rsW
i
j D "‚Zk

‚rkW
i
j : (13.27)

Therefore,

rsW
i
j D T krkW

i
j ; (13.28)

where T k is the contravariant component of the unit tangent.

Exercise 282. Show that

r2
s D rˆrˆ: (13.29)

13.6 The Curvature and the Principal Normal

As was the case for hypersurfaces, the object rˆU‰ does not vanish. Instead, it is
orthogonal to the tangent space:

U‚ � rˆU‰ D 0: (13.30)

Derivation of this equation is analogous to that of equation (11.15). In the case of
hypersurfaces, we argued that since rˆU‰ is orthogonal to the tangent plane, it
must point along the normal N . For curves, there is no unique normal direction.
For curves embedded in the three-dimensional Euclidean space, the normal space at
each point on a curve is a plane. In general, the dimension of the normal space equals
the co-dimension of the curve. Therefore, we are not able to represent rˆU‰ as a
product of an invariant vector and a tensor with scalar elements. We refer to this
object as the vector curvature tensor and denote it by Bˆ‰:

Bˆ‰ D rˆU‰: (13.31)

For curves, the vector curvature tensor consists of a single vector. The indices
continue to play their important role: they remind us that Bˆ‰ is not an invariant
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vector and indicate how Bˆ‰ changes under a reparametrization of the curve. In
order to obtain an invariant, one of the indices must be raised and contracted with
the other to yield Bˆˆ. The invariant Bˆˆ is called the curvature normal.

The curvature normal Bˆˆ can be viewed from two complementary points of view.
If the curve is interpreted as a general embedded surface, the curvature normal is
seen as the surface Laplacian of the position vector R:

Bˆˆ D rˆrˆR: (13.32)

This interpretation is an immediate consequence of the definition in equation
(13.31). This is the interpretation of Chap. 12. Alternatively, if the emphasis is on
the one-dimensional nature of the curve, Bˆˆ can be represented as

Bˆˆ D r2
s R D d2R .s/

ds2
; (13.33)

where the invariant derivative rs is defined in equation (13.24) and the equivalence
of (13.32) and (13.33) follows from equation (13.29). The latter interpretation is
particularly important in the following section on Frenet formulas.

At points where the vector Bˆ˚ does not vanish it can be represented as a product
its length �, called the curvature, and a unit vector P called the principal normal P:

Bˆ˚ D �P: (13.34)

This concept of curvature is analogous to the mean curvature of a hyper surface.
However, the curvature � is always nonnegative and the principal normal P is only
defined at points with positive curvature �. By contrast, the mean curvature B˛

˛ of a
hypersurface can be positive or negative and the normal N is defined everywhere.
These differences are illustrated in Fig. 13.1, which shows a curve that can be
considered either as a hypersurface in the plane

x .t/ D t (13.35)

y .t/ D sin t (13.36)

and as a curve in the three-dimensional space

x .t/ D t (13.37)

y .t/ D sin t (13.38)

z .t/ D 0: (13.39)

In the former case, the normalN is a continuous vector field and the mean curvature
is given by

B˛
˛ D sin˛

.1C cos2 ˛/3=2
: (13.40)
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Fig. 13.1 The first two plots show a sinusoid viewed as embedded in the two-dimensional plane.
With respect to this embedding, the sinusoid is a hypersurface and has a well-defined continuous
unit normal field N. The other two plots show the sinusoid embedded in the three-dimensional
space. The curvature normal B˛˛ is a smooth vector field, while the principal normal P is only
defined at points of nonzero curvature

In the latter case, the principal normal P is piecewise continuous and is undefined at
points of zero curvature. Also, when the curve is interpreted as a hypersurface, the
direction of the normal can be arbitrarily chosen, while the direction of the principal
normal P is unique.

13.7 The Binormal and the Frenet Formulas

The focus of the preceding sections was on the elements that curves share with
surfaces of higher dimensions. The focus of this section is on the one-dimensional
nature of curves. We start with the position vector R and repeatedly apply the
invariant derivative rs . Since, according to equation (13.26), rs is equivalent to
d=ds when applied to invariants, we may as well refer the curve to the signed arc
length s and use the ordinary derivative d=ds. Keep in mind, however, that, for
invariants, d=ds is equivalent to "ˆrˆ, which means that the entire discussion can
be easily translated to arbitrary coordinates.

The unit tangent vector T is obtained by applying d=ds to the position vector T:

dR
ds

D T: (13.41)

An application of d=ds to T yields the curvature and the principal normal:

dT
ds

D �P; (13.42)
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where the principal normal P is unit length and orthogonal to the tangent T:

P � P D 1 (13.43)

P � T D 0: (13.44)

Exercise 283. Differentiate the identity T .s/ � T .s/ D 1 to conclude that P is
orthogonal to T.

Applying d=ds to equation (13.43):

dP
ds

� P D 0; (13.45)

and to equation (13.44):

dP
ds

� T C � D 0: (13.46)

The last equation can be written as

�
dP
ds

C �T
�

� T D 0 (13.47)

which shows that the vector

dP
ds

C �T (13.48)

is orthogonal to T. Furthermore, from equation (13.45) it follows that this vector is
also orthogonal to P. Denote this vector by �Q:

dP
ds

C �T D �Q; (13.49)

where Q is a unit vector and the sign of � is chosen such that the triplet T;P;Q
forms a right-handed set in the following sense

"ijkT
iP jQk D 1: (13.50)

The quantity � is called the torsion and the vector Q is called the binormal vector
or simply the binormal.

The binormal Q can be expressed as the vector product of the tangent and the
principal normal

Q D T � P: (13.51)
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Applying d=ds to both sides of the equation, we find

dQ
ds

D dT
ds

� P C T � dP
ds
; (13.52)

or

dQ
ds

D P � P C T � .��T C �Q/ : (13.53)

Since T � Q D �P, we have

dQ
ds

D ��P: (13.54)

The combination of equations (13.42), (13.49), and (13.54), summarized here:

dT
ds

D �P (13.55)

dP
ds

D ��TC�Q (13.56)

dQ
ds

D ��P (13.57)

are called the Frenet formulas.

Exercise 284. Show that the vector dP=ds C �T is obtained from dP=ds by the
Gram–Schmidt orthogonalization procedure.

Exercise 285. Calculate the principal normal, binormal, curvature, torsion for the
spiral

x .t/ D 4 cos t (13.58)

y .t/ D 4 sin t (13.59)

z .t/ D 3t: (13.60)

Exercise 286. Repeat the calculation for the spiral

x .t/ D 4 cos t (13.61)

y .t/ D 4 sin t (13.62)

z .t/ D �3t: (13.63)

Note which answers change for this spiral.
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13.8 The Frenet Formulas in Higher Dimensions

When the Frenet formulas (13.55)–(13.57) are written in matrix form

2
4

dT
ds
dP
ds
dQ
ds

3
5 D

2
4 �

�� �

��

3
5
2
4 T

P
Q

3
5 ; (13.64)

and we are struck by the skew symmetric property. This is part of a larger pattern.
Suppose that a curve is embedded in an N -dimensional Euclidean space. At a

given point on the curve, construct an orthonormal basis according to the following
procedure. The initial vector T0 is taken to be the unit tangent T. Subsequently,
Tm is obtained is obtained by applying a single step of Gram–Schmidt algorithm to
dTm�1=ds to make it orthogonal to each of the preceding vectors and factoring out
a scalar multiple to make it unit length.

In the preceding section, we examined the first two steps of the procedure. The
vector dT0=ds is automatically orthogonal to T0, since T0 .s/ is unit length for all s.
Thus, in the context of the Gram–Schmidt procedure, it only needs to be normalized
to produce T1:

dT0
ds

D �1T1: (13.65)

Using the terminology of the preceding section, T1 is the principal normal P and �1
is the curvature �. Thus, T1 satisfies the following identities

T1 � T0 D 0 (13.66)

T1 � T1 D 1: (13.67)

Differentiating the first identity we find

dT1
ds

� T0 C T1 � dT0
ds

D 0; (13.68)

which, by equation (13.65), gives

dT1
ds

� T0 D ��1: (13.69)

Differentiating the second identity yields the familiar orthogonality condition

dT1
ds

� T1 D 0: (13.70)
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Thus, dT1=ds is orthogonal to T1. Therefore, the Gram–Schmidt formula
includes the term that corresponds to T0 and a coefficient �2 chosen so that T2
is unit length:

�2T2 D dT1
ds

�
�
dT1
ds

� T0

�
T0: (13.71)

Therefore, by equation (13.69), we have

�2T2 D dT1
ds

C �1T0; (13.72)

or

dT1
ds

D �2T2 � �1T0: (13.73)

We recognize this relationship as equation (13.49), where T2 is the binormal Q and
�2 is the torsion � .

We now embark on the inductive step of the procedure. The unit vector Tm is
orthogonal to all preceding vectors Tk<m:

Tm � T0 D 0 (13.74)

Tm � T1 D 0 (13.75)

� � � D � � �
Tm � Tk D 0 (13.76)

� � � D � � �
Tm � Tm D 1: (13.77)

Furthermore, presume that up to k D m � 1; we have

dTk
ds

D �kC1TkC1 � �kTk�1: (13.78)

which we demonstrated for k D 0 and 1.
Differentiate equation (13.76), valid for k < m, with respect to s:

dTm
ds

� Tk C Tm � dTk
ds

D 0: (13.79)

Substitute equation (13.78) into equation (13.79):

dTm
ds

� Tk C �kC1Tm � TkC1 � �kTm � Tk�1 D 0: (13.80)
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The dot product Tm � Tk�1 vanishes for all k < m. Meanwhile, the dot product
Tm � TkC1 vanishes for all k < m � 1 and equals 1 for k D m � 1. Therefore,
equation (13.80) tells us the following

dTm
ds

� Tk D 0, for k < m � 1 (13.81)

dTm
ds

� Tm�1 D ��m (13.82)

In other words, dTm=ds is orthogonal to T0; : : : ;Tm�2, but not Tm�1. The fact that
dTm=ds is orthogonal to Tm follows from equation (13.77). Therefore, the Gram–
Schmidt formula always contains a single term

�mC1TmC1 D dTm
ds

�
�
dTm
ds

� Tm�1
�

Tm�1; (13.83)

which, with the help of equation (13.82) reads

�mC1TmC1 D dTm
ds

C �mTm�1: (13.84)

This equation can be written as

dTm
ds

D �mC1TmC1 � �mTm�1: (13.85)

and the proof by induction is complete.

Exercise 287. Explain why the last equation in the Frenet procedure reads

dTN�1
ds

D ��N�1TN�2; (13.86)

consistent with equation (13.57).

13.9 Curves Embedded in Surfaces

Leonhard Euler’s original investigation of surface curvature was based on analyzing
curves embedded in surfaces. Euler’s analysis focused on intersections of surfaces
with planes since curves embedded in planes was well understood.

We have so far analyzed two different types of embedded manifolds: hypersur-
faces and curves embedded in a Euclidean space. We are about to analyze a new
combination—curves embedded in surfaces. This configuration has a fundamentally
new characteristic: the ambient space is not Euclidean. This is a typical situation
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in Riemannian geometry, where the ambient space provides a metric from which
the differential elements of the embedded manifold are derived. Therefore, the
discussion contained in this section is essentially an example of Riemannian
analysis.

Suppose the surface is given by the equation

Zi D Zi .S/ ; (10.3)

and the embedded surface is given by

S˛ D S˛ .U / ; (13.87)

as before. We first discuss the embedding of the curve in the surface. This is the
Riemannian portion of our analysis. While many of the equations are identical to
previously encountered relationships, their interpretation is different.

The shift tensor S˛ˆ is given by

S˛ˆ D @S˛ .U /

@Uˆ
: (13.88)

The covariant metric tensor Uˆ‰ is defined by

Uˆ‰ D S˛ˇS
˛
ˆS

ˇ
‰: (13.89)

Despite the outward similarity of equations (13.89) and (13.11), their interpretations
are completely different! Equation (13.11) is not a definition of the metric tensor
Uˆ‰ , but rather a consequence of the definition (13.10). A definition based on the
covariant basis is not possible here, since we are considering embedding the curve
with respect to the surface and ignoring the larger ambient Euclidean space.

The next few steps follow a familiar pattern. The contravariant metric tensorUˆ‰

is the matrix inverse of Uˆ‰:

Uˆ‰U‰� D ıˆ�: (13.90)

From equation (13.89), we find

Uˆ‰ D SˆˇS
ˇ
‰; (13.91)

and

Sˆˇ S
ˇ
‰ D ıˆ‰: (13.92)

The Christoffel symbol �‚ˆ‰ also cannot be defined in the extrinsic fashion, as
was done in equation (13.18). We must instead accept the intrinsic definition
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�‚˚‰ D 1

2
U‚�

�
@U�ˆ

@U‰
C @U�‰

@Uˆ
� @Uˆ‰

@U�

�
: (13.18)

The curve Christoffel symbol �‚ˆ‰ is related to the surface Christoffel symbol �˛ˇ�
by the relationship

��ˆ‰ D �˛ˇ�S
�
˛ S

ˇ
ˆS

�
‰ C @S˛ˆ

@S‰
S�˛ : (13.93)

The definition of the covariant derivative reads

r‚T
˛ˆ
ˇ‰ D @T ˛ˆˇ‰

@U‚
C S

�
‚�

˛
�!T

!ˆ
ˇ‰ � S�‚�!�ˇT ˛ˆ!‰ C �ˆ‚�T

˛�
ˇ‰ � ��‚‰T ˛ˆˇ� : (13.94)

This derivative satisfies all the familiar properties.
The length element or line element

p
U is defined as the square root of the

determinant of the 1 � 1 covariant metric tensor Uˆ‰:

p
U D

p
jU��j: (13.95)

The Levi-Civita symbols "ˆ and "ˆ are defined by

"ˆ D p
U (13.96)

"ˆ D 1p
U
: (13.97)

The curve, being a hypersurface with respect to an ambient surface, has a well-
defined normal n˛ given by

n˛ D "˛ˇ"ˆS
ˆ
ˇ : (13.98)

We have already seen a definition analogous to this one in Sect. 10.7, where the
normal was defined for curves embedded in two-dimensional planes. Since in this
definition, nothing relies on the flatness of the ambient space, it remains valid for
hypersurfaces embedded in Riemann spaces. The normal n˛ is unit length

n˛n
˛ D 1 (13.99)

and is orthogonal to the tangent space

n˛S
˛
ˆ D 0: (13.100)

We next the curvature tensor bˆ‰ according to the equation

r‰S
˛
ˆ D bˆ‰n

˛: (13.101)
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This equation is identical to (11.42) which, in turn, is an immediate consequence of
the definition (11.16). However, the basis for equation (11.16) was the fact that
r˛Sˇ is orthogonal to the tangent space spanned by S˛ and thus colinear with
N. If you recall, the demonstration of that fact relied on the extrinsic definition
(10.80) of the Christoffel symbol. Therefore, in order to use equation (13.101) as the
definition of curvature, we must show that r‰S

˛
ˆ is orthogonal to the tangent space

by using the intrinsic definition (13.18) of the Christoffel tensor or the equivalent
equation (13.93).

The analytical expression for r‰S
˛
ˆ being orthogonal to the tangent space reads:

S‚˛ r‰S
˛
ˆ D 0: (13.102)

Let us expand the covariant derivative r‰S
˛
ˆ

r‰S
˛
ˆ D @S˛ˆ

@U‰
C S

ˇ
‰�

˛
ˇ�S

�
ˆ � ��ˆ‰S˛�: (13.103)

and contract both sides with S‚˛

S‚˛ r‰S
˛
ˆ D S‚˛

@S˛ˆ
@U‰

C �˛ˇ�S
‚
˛ S

ˇ
‰S

�
ˆ � ��ˆ‰S˛�S‚˛ : (13.104)

According to equation (13.93), the first two terms produce �‚ˆ‰ . The last term yields
��‚ˆ‰ since S˛�S

‚
˛ D ı‚� and equation (13.102) is confirmed.

We are therefore able to accept equation (13.101) as the definition of the
curvature tensor bˆ‰ . The invariant

bˆˆ; (13.105)

is called the geodesic curvature. Of course, geodesic curvature is the same as
the mean curvature. However, the term geodesic curvature is applied to one-
dimensional curves while mean curvature is applied to hypersurfaces in higher
dimensions.

At a particular point on a curve we have three curvature tensors in play: the
curvature tensorB˛

˛ of the host surface, the curvature tensor bˆ‰ characteristic of the
curve’s embedding in the surface, and the vector curvature tensor Bˆ‰ characteristic
of the curve’s embedding in the ambient Euclidean space. These three tensors and
linked by an identity that we are about to derive.

Express the equation of the curve (13.6) as a composition of the equation of the
surface (10.3) and the equation of the curve (13.87) within the surface

Zi .U / D Zi .S .U // : (13.106)

Differentiating this identity with respect to Uˆ yields a relationship among the three
shift tensors Zi

ˆ, Zi
˛ , and S˛ˆ:
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Zi
ˆ D Zi

˛S
˛
ˆ: (13.107)

The vector form of this equation is obtained by contracting both sides of this
equation with the ambient covariant basis Zi :

Uˆ D S˛S˛ˆ: (13.108)

Apply the covariant derivative r‰ to this identity:

r‰Uˆ D r‰S˛ S˛ˆ C S˛r‰S
˛
ˆ (13.109)

The combination on the left-hand side is Bˆ‰ . The tensor r‰S˛ is expanded by the
chain rule

r‰S˛ D S
ˇ
‰rˇS˛ D NB˛ˇS

ˇ
‰: (13.110)

Finally, r‰S
˛
ˆ equals bˆ‰n˛ . Putting these elements together yields the identity

Bˆ‰ D NB˛ˇS˛ˆS
ˇ
‰ C S˛n˛bˆ‰: (13.111)

We are interested in one particular corollary of this rich and beautiful relationship.
It states that B˛ˇS˛ˆS

ˇ
‰ is the normal component and n˛bˆ‰ are the tangential

components of the vector curvature tensor Bˆ‰ . Let us focus on the normal
component, which can be isolated by dotting both sides of this identity with the
normal N:

N � Bˆ‰ D B˛ˇS
˛
ˆS

ˇ
‰ (13.112)

The tensor N � Bˆ‰ is called the principal curvature tensor. While vector
curvature tensor Bˆ‰ depends on the curve’s embedding in the ambient space,
equation (13.112) tells us that its normal component N � Bˆ‰ depends only on the
surface curvature tensor and the manner of the embedding.

As the next step, raise the index ‰ and contract with ˆ:

N � Bˆˆ D B˛ˇS
˛
ˆS

ˇˆ (13.113)

By equation (10.31) interpreted in the current context, the right-hand side becomes

N � Bˆˆ D B˛
˛ � B˛ˇn˛nˇ: (13.114)

This equation leads to numerous geometric insights. The left-hand side can be
rewritten as �N � P where � is the curvature and P is the principal normal. The
right-hand side can be rewritten as

�
B
�
� S˛ˇ � B˛ˇ

	
n˛nˇ . We have
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�N � P D
�
B�
� S˛ˇ � B˛ˇ

�
n˛nˇ: (13.115)

Let us limit our attention to curves where the principal normal P is aligned with
the surface normal N, which would, in fact, make them equal. For such curves,
equation (13.115) becomes

� D
�
B�
� S˛ˇ � B˛ˇ

�
n˛nˇ; (13.116)

which is a very interesting formula that states the curvature �, characteristic of
the curve’s embedding in the larger Euclidean space, depends on the metric and
curvature tensors of the surface and the orientation—given by n˛—of the curve.

Let us ask the following question which, in 1760, was asked by Euler: Among all
possible embedded curves obtained by cutting the surface by an orthogonal plane,
which curves have the highest and the lowest curvatures? Equation (13.116) holds
the answer to this question.

By choosing different planes, we are essentially choosing n˛ . Therefore, alge-
braically, the question becomes: what are the extreme values of

�
B�
� S˛ˇ � B˛ˇ

�
n˛nˇ (13.117)

subject to the condition that n˛ is unit length

S˛ˇn
˛nˇ D 1: (13.118)

This is a fundamental question in linear algebra. It is well-known that the extremal
values and directions are given by the eigenvalue problem

�
B�
� S˛ˇ � B˛ˇ

�
nˇ D �S˛ˇn

ˇ: (13.119)

Juggling the indices yields
�
B�
� ı

˛
ˇ � B˛

ˇ

�
nˇ D �n˛: (13.120)

Therefore, the problem is reduced to finding the eigenvalues and eigenvectors of the
matrix

B�
� ı

˛
ˇ � B˛

ˇ : (13.121)

The simple argument we are about to make is best seen in plane matrix notation.
Denote the tensor B˛

ˇ by the matrix B and let its eigenvalues be �1and �2. Then the

tensor B�
� ı

˛
ˇ � B˛

ˇ is represented by the matrix

.�1 C �2/ I � B; (13.122)
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which has the same eigenvectors as B and the corresponding eigenvalues are

.�1 C �2/ � �1 D �2 (13.123)

.�1 C �2/ � �2 D �1 (13.124)

Therefore, the extremal values of the quadratic form (13.117) are the invariant
eigenvalues �1 and �2 of the curvature tensor B˛

ˇ . These eigenvalues are known
as the principal curvatures of the surface. Their sum equals the mean curvature:

B˛
˛ D �1 C �2 (13.125)

and their product equals Gaussian curvature:

K D �1�2: (13.126)

Furthermore, due to the symmetry of B˛ˇ the corresponding directions are
orthogonal.

13.10 Geodesics

The subject of embedded curves usually includes a discussion of geodesics. Given
two points A and B on the surface, the geodesic is the curve of least length
connecting A and B . Geodesics satisfy a set of second-order equations known as
the geodesic equations. These equations are usually derived [31] by following the
standard Euler–Lagrange procedure. We pursue an entirely different approach based
on the calculus of moving surface. We therefore postpone the subject of geodesics
until Chap. 17.

13.11 Summary

In this chapter, we studied curves from two perspectives: as general submanifolds
of codimension greater than one, and as submanifold of dimension one. The former
perspective led to the concepts of the curvature normal tensor Bˆ‰ which reduces to
NBˆ

‰ for hypersurfaces. The latter perspective led to an equivalent concept of the
principal normal P, the binormal Q as well as higher-order derivatives with respect
to arc length s.

Finally, we analyzed curves embedded in surfaces and recovered Euler’s defini-
tions of principal curvature.



Chapter 14
Integration and Gauss’s Theorem

14.1 Preview

In this chapter, we pursue two goals. First, we discuss integration from a geometric
point of view and establish the tensor calculus way of representing invariant
integrals in arbitrary coordinates. Second, we prove a rather general form of Gauss’s
theorem. The starting point for the derivation is Gauss’s theorem over flat domains
referred to as Cartesian coordinates. Our task is to extend that result to arbitrary
curved patches.

This chapter first defines a single kind of invariant integral in which a physical
quantity is integrated over a geometric domain. The domain may be a section of a
curve, a surface patch, or a three-dimensional domain. In all cases, the integral is
defined by a procedure in which the domain is broken up into ever smaller parts and
the limit of a finite sum is considered. All types of integrals (work, flux, circulation,
etc.) encountered in applications can be reduced to an invariant integral.

Gauss’s theorem and Stokes’ theorem transform integrals over closed domains to
integrals over the boundaries of those domains. Both theorems are multidimensional
generalizations of the fundamental theorem of calculus. We demonstrate that the
two theorems are closely related. The formulation of these theorems took several
decades and efforts from some of the nineteenth-century’s brightest scientific minds,
including Gauss, Ostrogradsky, Cauchy, Poisson, Maxwell, and Riemann [24].

14.2 Integrals in Applications

In applications, integrals represent physical and geometric quantities. For example,
the total mass M of a body � with density distribution 
 is given by the volume
integral

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 14, © Springer Science+Business Media New York 2013
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M D
Z
�


d�: (14.1)

The kinetic energy T of a fluid with density distribution 
 and velocity field V is
given by the integral

T D 1

2

Z
�


V � Vd�: (14.2)

The flux F of the fluid across a surface S is given by the surface integral

F D
Z
S

V � NdS: (14.3)

The total charge Q distributed with density � over the surface S of a conductor is
given by the surface integral

Q D
Z
S

�dS: (14.4)

The total force F of pressure exerted on a body � with boundary S immersed in
fluid with pressure distribution P is given by the surface integral

F D �
Z
S

PN dS: (14.5)

The total curvature T of a surface S is given by

T D
Z
S

KdS; (14.6)

where K is the Gaussian curvature.
The total gravitational energy V of a string U with linear mass density 


suspended in a gravitational field with potential P is given by the contour integral

V D
Z
U


P dU: (14.7)

Each of the integrals in these examples has the form

Z
Geometric Domain

Invariant. (14.8)

The definition of the integral (14.8) involves a limiting process, in which the domain
(whether it is�, S , or U ) is divided into small pieces and a finite sum approaches a
limit. This procedure is nontrivial, but its independence from coordinates is evident.
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14.3 The Arithmetic Space

The definition of the physical integral

Z
�

Fd�;

Z
S

FdS;

Z
U

FdU (14.9)

is entirely coordinate free. However, in order to evaluate a physical integral, one
almost always needs to introduce a coordinate system and transform the invariant
integral into a repeated arithmetic integral. The transformation to a repeated integral
consists of three steps. First, the physical field F is expressed as a function F .Z/,
F .S/ or F .U / with respect to the coordinates. Second, the domain of integration
is translated into the corresponding arithmetic domain. Third, an additional factor
is introduced that adjusts for the length, area, or volume mismatch between the
physical domain and its arithmetic representation.

Consider an example. Let F be the scalar field defined as the distance squared
from a point P . What is the integral of F over a unit disk � with a center that is a
distance

p
2 away from P ? This problem is illustrated in Fig. 14.1.

Can you solve this problem without introducing a coordinate system? Perhaps
you could, but given the available power of coordinates, it is hardly worth the
effort. Keep in mind that coordinate systems are a recent luxury. Ancient Greeks,
in particular Archimedes of Syracuse whose portrait appears in Fig. 14.2, did not
have analytical methods at their disposal, yet were remarkably good at evaluating
areas and volumes. Famously, Archimedes discovered that the volume of a sphere
is 4�=3. The answer to the problem in Fig. 14.1 is 5�=2, so perhaps Archimedes
could solve it geometrically, as well. However, with the benefit of coordinates, one
need not be Archimedes to solve this problem.

Fig. 14.1 A unit disk � and
a point P a distance

p
2 from

the center of the disk. The
scalar field F is defined as the
distance squared from the
point P . The firgure includes
six level lines of the function
F for values betwen 1=2
and 11=2
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Fig. 14.2 This 1620 work by
the Italian Baroque painter
Domenico Fetti
(c. 1589–1623) depicts
Archimedes toiling over a
problem in natural science
without the benefit of a
coordinate system

We ought to select a coordinate system that is well-suited for the particular
problem at hand. Let us first consider Cartesian coordinates x; y with the origin
at the center and coordinates .1; 1/ at the point P . Then the domain � is expressed
by the relatively simple integration and the integral is given by

Z
�

Fd� D
Z 1

�1

Z p
1�y2

�
p
1�y2

�
.x � 1/2 C .y � 1/2

�
dxdy (14.10)

If we shift the coordinate system to the point P , then the integrand simplifies, while
the limits become more complicated

Z
�

Fd� D
Z 0

�2

Z �1C
p
1�.yC1/2

�1�
p
1�.yC1/2

�
x2 C y2

	
dxdy: (14.11)

These integrals are not particularly easy to evaluate. That is because Cartesian
coordinates are usually not the best choice when describing circular geometries.

A significant simplification comes from using polar coordinates. If the origin of
the polar coordinates r; 	 is at the center of the disk and the point P is at 	 D 0,
then the domain � corresponds to a simple rectangle .r; 	/ 2 Œ0; 1� � Œ0; 2�� in the
arithmetic space. The distance squared is given by the law of cosines

F .r; 	/ D 2C r2 � 2p2r cos 	 (14.12)
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Fig. 14.3 With respect to the polar coordinate system, illustrated on the left, the domain �

corresponds to the arithmetic domain shown on the right

and the invariant integral is given by repeated arithmetic integral

Z
�

Fd� D
Z 2�

0

Z 1

0

�
2C r2 � 2p2r cos 	

�
rdrd	; (14.13)

which is easy to evaluate. From multivariable calculus, the reader is familiar with
the additional factor of r in the integrand. It is the adjustment for the distortion in
area between the arithmetic and the geometric domains. Its interpretation from the
tensor calculus point of view is discussed below.

The polar coordinate system that we just considered is perhaps the best choice for
the posed problem because it leads to the simplest repeated integral. Nevertheless,
let us consider one more polar coordinate system. It is not as convenient for the
problem we have just solved, but it is better suited for the illustration of the concept
of the arithmetic space. Place the origin of the coordinate system at P and direct the
polar axis in the direction tangent to the disk as illustrated on the left of Fig. 14.3.

In this polar coordinate system, the field F has the simplest form: F .r; 	/ D
r2. The main challenge is to identify the limits of integration. It is evident that 	
changes from 0 to �=2. It is not hard to demonstrate that, for each 	 , r varies fromp
2 cos

�
�
4

� 		�p
sin 2	 to

p
2 cos

�
�
4

� 		Cp
sin 2	 . Therefore, the conversion

to arithmetic integral is

Z
�

Fd� D
Z �=2

0

Z p
2 cos. �4 �	/Cp

sin 2	

p
2 cos. �4 �	/�p

sin 2	
r2 rdrd	: (14.14)

The repeated integral on the right hand side of equation (14.14) is called arith-
metic because it involves algebraic expressions rather than geometric quantities. It
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can be evaluated by the analytical techniques that the reader learned while studying
multivariable calculus. The immediate graphical interpretation of equation (14.14),
illustrated on the right of Fig. 14.3, is Cartesian—thus the term arithmetic which is
often used synonymously with R

n.
This Cartesian feature of the plot on the right may not seem particularly

significant at this point. After all, we could have chosen a Cartesian coordinate
system to begin with. Instead, we chose a curvilinear coordinate system with
curved coordinate lines. Subsequently, the geometric interpretation of the arithmetic
integral (14.14) “straightened out” the coordinate lines. Both the original domain �
and the arithmetic domain are Euclidean, and the curvature of the coordinate lines is
only due to our choice of coordinates. Looking ahead to studying curved surfaces,
the Euclidean nature of the arithmetic domain and the associated Cartesian
interpretation of the coordinates will take on much greater significance.

14.4 The Invariant Arithmetic Form

We now discuss the crucial factor of r in equations (14.13) and (14.14). Most
calculus textbooks include an illustration of the fact that rdrd	 represents the area
of a small coordinate patch. Therefore, the factor of r can be thought of as the
metric adjustment factor. The corresponding tensor object is the volume elementp
Z introduced in Sect. 9.7, which may be referred to as the area element and length

element depending on the context. Tensor calculus offers a simple and general recipe
for expressing invariant integrals in arithmetic form. It is captured by the equation

Z
�

Fd� D
Z B3

A3

Z B2

A2

Z B1

A1

F .Z/
p
ZdZ1dZ2dZ3; (14.15)

where the integration limits satisfy A1 < B1, A2 < B2 and A3 < B3 and are chosen
so that the integration domain is properly captured.

We must demonstrate that the repeated arithmetic integral in equation (14.15) is
invariant under a change of variables. We limit our demonstration to orientation-
preserving coordinate changes. This orientation-preserving property of a coordinate
change is given in Sect. 4.10. The explanation is based on the corresponding theorem
from multivariate calculus. According to the change-of-variables theorem, when
going from one coordinate system (unprimed) to another (primed), an integral
transforms according to the following rule

Z B3

A3

Z B2

A2

Z B1

A1

F .Z/ dZ1dZ2dZ3D
Z B30

A30

Z B20

A20

Z B10

A10

F
�
Z0	 jJ j�1 dZ10

dZ20

dZ30

:

(14.16)

In words, the integrand needs to be re-expressed in terms of the new (primed)
coordinate systems and multiplied by the absolute value of the determinant of
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the coordinate transformation and the limits of integration must be appropriately
adjusted. Let us apply this rule to the integral in equation (14.15). Going from
unprimed coordinates to the primed coordinates, we have

Z B3

A3

Z B2

A2

Z B1

A1

F .Z/
p
ZdZ1dZ2dZ3

D
Z B30

A30

Z B20

A20

Z B10

A10

F
�
Z
�
Z0		p

ZJ�1dZ10

dZ20

dZ30

(14.17)

Recall from Sect. 9.9 that the volume element
p
Z is a relative invariant of weight

�1, that is

p
Z0 D J�1pZ: (14.18)

Since F .Z0/ D F .Z .Z0//, we have

Z B3

A3

Z B2

A2

Z B1

A1

F .Z/
p
ZdZ1dZ2dZ3 D

Z B30

A30

Z B20

A20

Z B10

A10

F
�
Z0	p

Z0dZ10

dZ2
0

dZ3
0

(14.19)

which confirms the invariant nature of the integral in equation (14.15).

14.5 Gauss’s Theorem

Gauss’s theorem is of fundamental importance in applied mathematics. After all, it
is a multidimensional generalization of the fundamental theorem of calculus. For a
domain � with boundary S , Gauss’s theorem reads

Z
�

ri T
id� D

Z
S

NiT
idS: (14.20)

It holds for a sufficiently smooth tensor field T i . Importantly, Gauss’s theorem
holds in Riemannian as well as Euclidean spaces. For instance, on a curved patch S
bounded by a contour U , Gauss’s theorem for a tensor T ˛ reads

Z
S

r˛T
˛dS D

Z
U

n˛T
˛dU: (14.21)

The applications of this theorem are too numerous to even begin to mention. In this
book, its most frequent application will be in the context of calculus of variations.

Let us assume that Gauss’s theorem holds in the Euclidean space and prove
its more general Riemannian form (14.21). Convert the volume integral to the
arithmetic form
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Z
�

ri T
id� D

•
ri T

i
p
ZdZ1dZ2dZ3 (14.22)

and expand the covariant derivative according to its definition

Z
�

ri T
id� D

• �
@T i

@Zi

p
Z C �iikT

k
p
Z

�
dZ1dZ2dZ3 (14.23)

Transform the first term in the integrand by the product rule

Z
�

ri T
id� D

• 0
@@

�
T i

p
Z
�

@Zi
� T i @

p
Z

@Zi
C �iikT

k
p
Z

1
A dZ1dZ2dZ3

(14.24)

Sincev

@
p
Z

@Zi
D p

Z�kki ; (14.25)

the last two terms cancel, leaving the single term

Z
�

ri T
id� D

• @
�
T i

p
Z
�

@Zi
dZ1dZ2dZ3: (14.26)

This term is subject to Gauss’s theorem in the arithmetic space. After all, the
arithmetic space is a Euclidean space referred to as Cartesian coordinates. Thus,

Z
�

ri T
id� D

Z
NS

NNiT i
p
Zd NS; (14.27)

where the bar above the letter indicates that the symbol refers to an object in the
arithmetic space. Express the surface integral in this equation in arithmetic form

Z
�

ri T
id� D

Z
NS

NNiT i
p
Z
p NSdS1dS2: (14.28)

Let us determine the relationship between the arithmetic and the actual normals
NNi and Ni . These normals are given by the expressions

NNi D 1

2
N"ijk N"˛ˇZj

˛Z
k
ˇ , and (14.29)

Ni D 1

2
"ijk"

˛ˇZj
˛Z

k
ˇ: (14.30)

Note that there are no bars over the shift tensors. The entries of the shift tensor
are derived from the parametric equations that describe the boundary—and those are
the same in the arithmetic and the actual spaces. Thus the two normals are related
by the identity
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NNi
p NSp NZ

D Ni

p
Sp
Z
; (14.31)

where NZ D 1 because the coordinates are Cartesian in the arithmetic space.
Therefore, equation (14.27) can be rewritten as

Z
�

ri T
id� D

“
NiT

i
p
SdS1dS2; (14.32)

which is, in arithmetic form, precisely the statement of Gauss’s theorem:

Z
�

ri T
id� D

Z
S

NiT
idS: (14.33)

14.6 Several Applications of Gauss’s Theorem

As the first striking application let us show that the integral of the normal over closed
surface vanishes:

Z
S

NdS D 0: (14.34)

The integral of the normal may be interpreted as the total force on a body immersed
in a uniform pressure field. The demonstration of equation (14.34) is entirely
straightforward. Since the integral in question can be written as

Z
S

NdS D
Z
S

N iZi dS; (14.35)

an application of Gauss’s theorem yields

Z
S

NdS D
Z
�

r iZi d� (14.36)

and the integrand vanishes due to the metrinilic property of the covariant derivative.
As another even more striking and, perhaps, even more straightforward applica-

tion, let us show that the integral of curvature normal over vanishes over a closed
surface

Z
S

NB˛
˛ dS D 0: (14.37)

This identity is a near triviality since the curvature normal equals the surface
Laplacian of the position vector
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NB˛
˛ D r˛r˛R: (14.38)

Thus, by Gauss’s theorem,

Z
S

r˛r˛R dS D
Z
U

n˛r˛R dU D
Z
U

n dU; (14.39)

whereU is the nonexistent boundary of the closed surface S . Thus, equation (14.37)
holds.

If the same integral is considered over a patch rather than a closed surface, then
the result

Z
S

NB˛
˛ dS D

Z
U

n dU (14.40)

gives a vivid geometric interpretation of mean curvature: Mean curvature measures
the degree to which the contour boundary normal field n points consistently out of
the plane. Furthermore, the curvature normal is given by the limit

NB˛
˛ D lim

S!0

R
U

n dUR
S
dS

; (14.41)

where the integrals are calculated for a patch S that is appropriately shrinking to a
point at which the normal and the mean curvature are evaluated. Dotting both sides
with N gives an explicit limit for the mean curvature

B˛
˛ D N � lim

S!0

R
U

n dUR
S
dS

: (14.42)

14.7 Stokes’ Theorem

In order to demonstrate the Stokes’ theorem, introduce the unit tangent vector T. Its
ambient components Ti are given by expression

Ti D "ijkN
j n˛zk˛ (14.43)

Exercise 288. Show that the vector T with components given by (14.43) is indeed
the unit tangent to the contour boundary. That is, T is unit length

T � T D 1; (14.44)

orthogonal to the surface normal N
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T � N D 0; (14.45)

and the contour normal n

T � n D 0: (14.46)

Now, onto the proof of the Stokes’ theorem. The contour integral is given by

Z
U

F iTi dU D
Z
U

F i"ijkN
j n˛Zk

˛dU; (14.47)

where the integral on the right is immediately subject to Gauss’s theorem:

Z
U

F iTi dU D
Z
S

r˛
�
F i"ijkN

jZk
˛

	
dS (14.48)

Expand the integrand by the product rule

Z
U

F iTi dU D
Z
S

�
r˛F i"ijkN

jZk
˛ C F i"ijkr˛N jZk

˛ C F i"ijkN
jr˛Zk

˛

�
dS;

(14.49)

and apply the appropriate differential identity to each term
Z
U

F iTi dUD
Z
S

�
Z˛
mrmF i"ijkN

jZk
˛�F i"ijkZ

j

ˇB
˛ˇZk

˛CF i"ijkN
jN kB˛

˛

�
dS:

(14.50)

The second and the third terms vanish due to the skew-symmetry of the Levi-Civita
symbol "ijk . Thus, we are left with a single term

Z
U

F iTi dU D
Z
S

rmF i"ijkN
jZk

˛Z
˛
mdS: (14.51)

By the projection formula (10.55), we have

Z
U

F iTi dU D
Z
S

rmF i"ijkN
j ıkmdS � rmF i"ijkN

jN kNmdS: (14.52)

The term with the three normals vanishes due to the skew-symmetry of "ijk and the
remaining term (with the indices rotated i ! j ! k ! i ) gives us precisely the
statement of Stokes’ theorem

Z
U

F iTi dU D
Z
S

"ijkr iF jN kdS , Q.E.D. (14.53)

Exercise 289. Explain why the term "ijkZ
j

ˇZ
k
˛B

˛ˇ vanishes.
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14.8 Summary

This chapter was devoted to integration. Integration proved to be another topic
that is well organized by the tensor framework. We have highlighted that physical
integrals are expressed in coordinates by equation (14.15). Furthermore, integrals
with sufficiently smooth integrands are governed by Gauss’s theorem (14.21).
Gauss’s theorem has numerous applications. In this book, Gauss’s theorem will
find important applications in shape optimization and other problems with moving
surfaces.



Part III
The Calculus of Moving Surfaces



Chapter 15
The Foundations of the Calculus
of Moving Surfaces

15.1 Preview

Moving surfaces are ubiquitous in life and mathematics. Moving surfaces, like
stationary surfaces, need their own language. We have shown that, in many ways,
tensor calculus is an ideal language for describing stationary surfaces. For moving
surfaces, the language of tensors must be extended to capture the particularities
of moving surfaces. This extension comes in the form of the calculus of moving
surfaces (CMS).

The term moving surface likely invokes an image of dynamically deforming
physical surfaces, such as waves in water, soap films, biological membranes, or a
fluttering flag. However, in applications, moving surfaces arise in numerous other
contexts. For example, in shape optimization—a branch of the calculus of variations
where the unknown quantity is the shape of a domain—moving surfaces arise as
a parametrized family of allowable variations. In shape perturbation theory—I
think this term is self-descriptive enough—moving surfaces arise as evolutions from
the unperturbed to the perturbed configurations. Finally, moving surfaces can be
effectively introduced in problems where one may not think that moving surfaces
can play any role at all. For example, in Chap. 17 we use the calculus of moving
surfaces to prove a special case of the celebrated Gauss–Bonnet theorem which
states that the integral of Gaussian curvature over a closed surface is independent of
the shape of the surface and only depends on its genus (the number of topological
holes).

The fundamental ideas of the calculus of moving surfaces were introduced by the
French mathematician Jacques Hadamard (Fig. 15.1) who studied the propagation
of discontinuities in continuous media. The basic concepts were introduced in his
Mémoire sur le problème d’analyse relatif à l’équilibre des plaques elastiques
encastrées [21]. Since Hadamard’s pioneering work, numerous contributions, large
and small, were made by several distinguished applied mathematicians [16, 45].

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 15, © Springer Science+Business Media New York 2013
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Fig. 15.1 The great French
mathematician Jacques
Hadamard (1865–1963) is the
originator of the calculus of
moving surfaces

15.2 The Kinematics of a Moving Surface

A moving surface S .t/ can be thought of as a family of surfaces parameterized
by a time-like variable t . For simplicity, we refer to t simply as time, although in
nonphysical scenarios t can be any parameter. We almost always drop the argument
t and use the symbol S to denote a moving surface.

A moving surface can be described parametrically by a set of equations

Zi D Zi .t; S/ ; (15.1)

where S˛ are the coordinates to which the surface is referred at time t . As always, we
suppress the tensor index of function arguments. The ambient coordinates Zi and
the surface coordinates S˛ are arbitrary, subject to sufficient smoothness conditions
discussed in the next paragraph. Equation (15.1) is analogous to equation (10.3) for
a stationary surface. At any particular moment of time t , the surface is subject to
classical differential geometry analysis described in the preceding chapters.

We assume that surface coordinates evolve smoothly. Analytically, this means
that Zi .t; S/ is a smooth function of t . Intuitively, this implies that nearby points
on nearby surfaces (i.e., surfaces corresponding to nearby times t and t C h) have
nearby surface coordinates. This describes continuity while smoothness is stronger:
our coordinates are not only evolving continuously, but differentiably to a sufficient
number of orders. In particular, the trajectoryZi .t; S0/ of a point with fixed surface
coordinates S˛0 is a smooth curve.

Equation (15.1) describe a family of invariant surfaces for a particular com-
bination of ambient and surface coordinates. In the spirit of tensor calculus, we
must enable ourselves to parameterize this family of surfaces in a completely
arbitrary way, only subject to the smoothness requirements just discussed. Consider
an alternative family of parametrizations



15.2 The Kinematics of a Moving Surface 251

Fig. 15.2 The same evolution of an ellipse, in which the horizontal semiaxis equals At , is
parameterized in two alternative ways. The figure on the left shows parametrization (15.5), while
the figure on the right shows parametrization (15.6). The dotted lines show the trajectories of
coordinate particles, that is, points of constant surface coordinates

Zi D Zi
�
t; S 0	 ; (15.2)

where we have kept the ambient coordinates unchanged, but introduced new surface
coordinates S˛

0

. What is the relationships between the old coordinates S˛ and the
new coordinates S˛

0

? The key point to realize is that the relationship between the
two coordinate systems must depend on time:

S˛
0 D S˛

0

.t; S/ (15.3)

S˛ D S˛
�
t; S 0	 : (15.4)

In other words, equations (10.27) and (10.28) would no longer be sufficient.
The calculus of moving surfaces, following in the footsteps of tensor calculus, is
adamant about constructing an analytical framework that is completely independent
of parameterization, leaving the freedom to choose a parametrization to the analyst.

Consider the evolution of an ellipse in which one of the semiaxes is growing at a
constant rate A. Figure 15.2 shows this evolution from t D 1 to t D 2. Perhaps the
simplest way to parametrize this evolution is



x .t; ˛/ D At cos˛
y .t; ˛/ D sin˛

: (15.5)

In this parameterization, the value of ˛ does not correspond to the polar angle 	 .
The same evolution parameterized by 	 appears as

8<
:
x .t; 	/ D At cos 	p

cos2 	CA2t2 sin2 	

y .t; 	/ D At sin 	p
cos2 	CA2t2 sin2 	

: (15.6)

The former parametrization is seen on the left of Fig. 15.2 and the latter on the right.
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The relationship between S1 D ˛ and S1
0 D 	 is, of course, time-dependent

	 .t; ˛/ D arccot .At cot˛/ (15.7)

and that is the key point. To reiterate: in order to assure the freedom to choose any
parameterization for a moving surface, one must consider a time-dependent change
of variables (15.3)–(15.4). If we were to restrict ourselves to time-independent
changes of parametrization, then there would be no need for the new derivative
operator Pr, which is at the heart of the calculus of moving surfaces.

It is the inescapable time dependence in the relationships (15.3) and (15.4) that
poses the challenge that the invariant time derivative Pr seeks to overcome. The
crux of the problem is that the partial derivative @=@t of a invariant T .t; S/ is not
itself an invariant. We demonstrate this in the following paragraph. So our starting
point for moving surfaces is more complicated than it was for stationary surfaces
where the partial derivative @=@S˛ produced a covariant tensor out of an invariant.
Of course, matters become even more complicated when the partial time derivative
@=@t is applied to a tensor T i˛jˇ . As you would expect, the result @T i˛jˇ .t; S/ =@t is
not a tensor.

We now show that the partial derivative @=@t does not preserve the invariant
property. Suppose that T is an invariant defined on a moving surface, such as the
mean curvature B˛

˛ or the Gaussian curvature K. Let U be the partial derivative of
T with respect to time

U D @T .t; S/

@t
; (15.8)

and evaluate U according to the same rule in the alternative coordinate system S˛
0

U 0 D @T .t; S 0/
@t

: (15.9)

In order to establish the relationship between U and U 0, differentiate the identity

T
�
t; S 0	 D T

�
t; S

�
t; S 0		

with respect to t . By the chain rule, we find

U
0 D @T .t; S/

@t
C @T

@S˛
@S˛ .t; S 0/

@t
: (15.10)

Introduce the Jacobian-like object J ˛t defined as

J ˛t
�
t; S 0	 D @S˛ .t; S 0/

@t
: (15.11)
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The definition of the Jacobians J ˛
˛0 and J ˛

0

˛ is the same as before except now these
objects are functions of t :

J ˛˛0

�
t; S 0	 D @S˛ .t; S 0/

@S˛
0

(15.12)

J ˛
0

˛ .t; S/ D @S˛
0

.t; S/

@S˛
: (15.13)

Using the newly defined object J ˛t , equation (15.10) can be rewritten as

U
0 D U C J ˛t r˛T: (15.14)

This identity indicates that U is not an invariant; after all, U 0 ¤ U because of the
term J ˛t r˛T . Thus, the tensor property is lost even for invariants. This is not the
case for the partial derivatives @=@Zi and @=@S˛ , which produced covariant tensors
out of invariants. In this chapter, we construct a new differential operator Pr that
preserves the invariant property. In the next chapter, the new operator is extended to
arbitrary tensors.

Exercise 291. Calculate the Jacobians J ˛t and J ˛
0

t for the change of variables in
equation (15.7).

15.3 The Coordinate Velocity V i

In this section we introduce the coordinate velocity V i . It is an essential ingredient in
defining the invariant velocity C , which is the fundamental quantity in the calculus
of moving surfaces. The coordinate velocity V i is defined as

V i D @Zi .t; S/

@t
: (15.15)

It is the ambient component of the velocity of the coordinate particle with fixed
coordinates S˛ . To show this, note that the position vector R tracking the coordinate
particle S˛ is given by

R .t; S0/ D R .Z .t; S0// : (15.16)

Differentiating, we find

@R .t; S0/
@t

D @R
@Zi

@Zi .t; S0/

@t
; (15.17)
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or

V D V iZi ; (15.18)

confirming that V i is the ambient coordinate of velocity.
The projection of the coordinate velocity onto the surface is called the tangential

coordinate velocity V ˛

V ˛ D V iZ˛
i : (15.19)

Exercise 292. Compute V i for the parametrization (15.5) of the ellipse evolution.

Exercise 293. Compute V i for the parametrization (15.6) of the ellipse evolution.

Exercise 294. Note that the answers obtained in the two preceding exercises are
different, indicating that V i is not a tensor with respect to changes in surface
coordinates.

Exercise 295. Compute V ˛ for the parametrization (15.5) of the ellipse evolution.

Exercise 296. Compute V ˛0

for the parametrization (15.6) of the ellipse evolution.

Exercise 297. Are the two answers the same? What does that tell you about the
tensor nature of V ˛ with respect to surface coordinate changes?

Exercise 298. Show that V i is tensor with respect to changes in ambient coordi-
nates.

Exercise 299. From the preceding exercise and equation (15.19), conclude that V ˛

is also a tensor with respect to changes in ambient coordinates.

Exercise 300. Show that the acceleration of a coordinate particle is given by

Ai D @V i

@t
C �ijkV

j V k: (15.20)

The preceding exercises dealt with one particular example of a change of surface
coordinates. Let us now derive the general rules by which V i and V ˛ transform
under a simultaneous change of ambient and surface coordinates. In the primed
coordinates, V i 0 is given by

V i 0 D @Zi 0 .t; S 0/
@t

: (15.21)

To relate V i and V i 0 , substitute the relationships between the coordinate system into
equation (15.21)

V i 0 D @Zi 0 .Z .t; S .t; S 0///
@t

: (15.22)
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Expanding the right-hand side, we find by a repeated application of the chain rule:

V i 0 D @Zi 0

@Zi

�
@Zi .t; S/

@t
C @Zi .t; S 0/

@S˛
@S˛ .t; S 0/

@t

�
: (15.23)

In other words,

V i 0 D V iJ i
0

i CZi
˛J

i 0

i J
˛
t : (15.24)

Thus, we officially conclude that V i is not a tensor with respect to changes in surface
coordinates. Note two interesting aspects of equation (15.24). First, if we were to
limit ourselves to time-independent changes of surface coordinates, then—since J ˛t
would vanish—V i would be tensor. Second, the nontensor part of the relationship
in equation (15.24) is proportional to the shift tensor Zi

˛ . Thus, the projection V iNi
has a legitimate chance at being an invariant. It is, in fact, an invariant and is known
as the surface velocity C and is introduced in the next section.

Exercise 301. Show that coordinate velocities V i and V i 0 associated with
parametrizations (15.5) and (15.6) satisfy equation (15.24).

Exercise 302. Show that V ˛ transforms according to

V ˛0 D V ˛J ˛
0

˛ C J ˛
0

˛ J
˛
t : (15.25)

Exercise 303. Show that coordinate velocities V ˛ and V ˛0

associated with
parametrizations (15.5) and (15.6) satisfy equation (15.25).

15.4 The Velocity C of an Interface

In the preceding section, we established that the coordinate velocity V i in the a
tensor on the account of the term Zi

˛J
i 0

i J
˛
t in equation (15.24). This term contains

Zi
˛ and is therefore orthogonal to the normal Ni (more accurately: Ni 0). To take

advantage of this, multiply both sides by Ni 0

V i 0Ni 0 D V iJ i
0

i Ni 0 CZi
˛J

i 0

i Ni 0J
˛
t : (15.26)

Since Ni 0J i
0

i D Ni , the first term on the right-hand side equals NiV i , while the
second term vanishes. Thus,

V i 0Ni 0 D V iNi : (15.27)

In other words, the normal component V iNi of the coordinate velocity is invariant.
This combination is called the velocity of the surface and is denoted by the letter C
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Fig. 15.3 Geometric
construction of the surface
velocity C

C D V iNi : (15.28)

Note that the sign of C depends on the choice of the normal.
The velocity C has a clear geometric interpretation illustrated in Fig. 15.3.

Denote the surfaces at two nearby moments of time t and t C h by St and StCh.
Suppose that A is a point on St and B is a point on St that has the same surface
coordinates as A. Thus, the vector from A to B is approximately Vh. Let P be the
point where the unit normal N of St intersects StCh. Since h is small, the angleAPB
is nearly �=2. The length of AP is approximately

jAP j D V � Nh D Ch: (15.29)

Therefore, C can be defined as the limit

C D lim
h!0

jAP j
h

(15.30)

and is interpreted as the instantaneous velocity of the interface in the normal
direction.

We have noted previously that the sign of C depends on the choice of the
normal. This property of C is also evident in its geometric interpretation: the length

jAP j is considered positive if the vector
��!
AP points in the same direction as N

and negative otherwise. This convention can be explicitly incorporated into the
geometric definition as follows

C D lim
h!0

��!
AP � N
h

: (15.31)
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The geometric approach makes no reference to coordinate systems, and it
is therefore clear that C is an invariant quantity. Furthermore, the geometric
construction of C is consistent with the analytical definition, since for “small
enough” h, AP is “nearly” an orthogonal projection of AB . There is no doubt that
this argument can be turned into a rigorous proof of the equivalence. We have not
presented a rigorous demonstration of the equivalence and therefore invite the reader
to view equation (15.28) as the definition of C and equation (15.31) as an intuitive
geometric insight.

Although the quantity C is a scalar, it is called a velocity because the normal
direction is implied. One may define the vector normal velocity C:

C D CN: (15.32)

The vector velocity C is convenient in several contexts, particularly equation
(15.46). However, all the information regarding the motion of the surface is
contained in the scalar quantity C .

Exercise 304. Compute C for A D 1 at t D 1 for the evolution (15.5).

Exercise 305. Compute C for A D 1 at t D 1 for the evolution (15.6).

15.5 The Invariant Time Derivative Pr

The covariant derivative ri was born out of the need to preserve the tensor property
of objects, since the partial derivative @=@Zi did not have this property. The
covariant surface derivative r˛ had similar motivations. In the study of moving
surfaces, the partial derivative @=@t does not preserve the tensor property, and
therefore a new operator is needed.

When we defined the invariant surface velocity C , our initial approach was
analytical and we later backed it up with geometric intuition. In the case of the
invariant derivative operator Pr, we start with the geometric construction, which is
analogous to that of C . It is illustrated in Fig. 15.4.

Suppose that an invariant field T is defined on the surface at all times t . The
field T could be the normal N, the mean curvature B˛

˛ , a surface restriction of
an invariant field defined in the ambient space, or anything else. The idea of the
derivative operator Pr is to capture the rate of change in T in the normal direction.
This is similar to how C measures the rate of deformation in the normal direction.
Given a point A on St , find the points B and P as we did previously: B lies on StCh
and has the same coordinates as A, and P is the intersection of StCh and the straight
line orthogonal to Sh. The geometric definition of PrT involves only points A and
P and corresponds to our intuition of instantaneous rate of change in the normal
direction:
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Fig. 15.4 Geometric
construction of the invariant
time derivative Pr as applied
to invariant quantities

PrT D lim
h!0

T .P / � T .A/
h

: (15.33)

The definition (15.33) is entirely geometric and therefore PrT is an invariant.
Our next goal is to find an analytical expression for PrT in a particular coordinate
system. By virtue of the geometric construction, the resulting expression is invariant.
The desired expression can be determined by analyzing the value of T at point B .
Since B has the same surface coordinates as A, we have

T .B/ � T .A/C h
@T .t; S/

@t
: (15.34)

On the other hand, T .B/ can be related to T .P / because B and P are nearby
points on the surface StCh. The relation reads

T .B/ � T .P /C hV ˛r˛T; (15.35)

since r˛T captures the rates of change in T along the surface and hV ˛ captures
the directed distance from B to P . Eliminating T .B/ from equations (15.34) and
(15.35), we find

T .P / � T .A/ � h

�
@T

@t
� V ˛r˛T

�
: (15.36)

Motivated by equation (15.36) we give the following definition of the invariant time
derivative Pr when applied to invariants:

PrT D @T .t; S/

@t
� V ˛r˛T: (15.37)

As before, we have not drawn a rigorous connection between the definitions (15.33)
and (15.37). Therefore, we consider equation (15.37) as the primary definition and
equation (15.33) as the geometric intuition behind the analytical definition.
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Exercise 306. With the help of equations (15.25) and (15.14), show analytically
that PrT is an invariant.

Exercise 307. Show that Pr satisfies the sum rule

Pr .F CG/ D PrF C PrG: (15.38)

Exercise 308. Show that Pr satisfies the product rule

Pr .FG/ D PrF G C F PrG: (15.39)

Exercise 309. Show that Pr satisfies the product rule with respect to the dot

Pr .F � G/ D PrF � G C F � PrG: (15.40)

Exercise 310. Show that Pr applied to a constant field T .t; S/ � A vanishes.

Definition (15.37) applies only variants of order zero. In Chap. 16, we expand Pr
to variants of arbitrary order. So far, we are able to apply it to the position vector R,
the normal N and the mean curvature B˛

˛ . We would now like to present the results
of applying Pr to these objects. However, in the case of the normal N and the mean
curvature B˛

˛ the derivation is postponed until Chap. 16.
By definition, PrR is given by

PrR D @R .t; S/
@t

� V ˛r˛R: (15.41)

The first term on the right-hand side can be expanded by the chain rule

@R .t; S/
@t

D @R .Z .t; S//
@t

D @R
@Zi

@Zi .t; S/

@t
D V iZi ; (15.42)

as we saw previously. Thus,

PrR D V iZi � V ˛S˛; (15.43)

or

PrR D �
V i � V ˛Zi

˛

	
Zi : (15.44)

Finally, combining equations (15.19) and (10.55), we find

PrR D V jNjN
iZi ; (15.45)
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or

PrR D CN D C: (15.46)

This is the first equation from the fundamental differentiation table of the calculus
of moving surfaces.

Exercise 311. Derive equation (15.46) by the geometric definition that (15.33).

Exercise 312. Fill in the details of the transition from equation (15.43) to (15.44).

Exercise 313. Fill in the details of the transition from equation (15.44) to (15.45).

As was mentioned earlier, we postpone the derivation of the formulas for PrN and
PrB˛

˛ until the following chapter. However, one relationship involving PrN is easy to
determine. Differentiating the identity N � N D 1, we find by the product rule that

N � PrN D 0: (15.47)

This relationship tells us that PrN is orthogonal to the normal space. It must therefore
lie in the tangent space and be represented by a linear combination of the covariant
basis vectors S˛ . The coefficients of the linear combination turn out to be �r˛C .
The result is known as the Thomas formula

PrN D �S˛r˛C: (15.48)

This formula first appeared in Tracy Thomas’s book [46]. Finally, we mention that
the derivative PrB˛

˛ is given by the following formula, perhaps the most beautiful
among all calculus of moving surfaces relationships:

PrB˛
˛ D r˛r˛C C CB˛

ˇB
ˇ
˛ : (15.49)

This formula can be found in [16].

15.6 The Chain Rule

The rule discussed in this section is analogous to the chain rule for the covariant
surface derivative r˛ discussed in Sect. 11.8. Suppose that a field T is defined in
the ambient space. Its surface restriction to the surface S is subject to the invariant
derivative Pr. By definition,

PrT D @T .t; S/

@t
� V ˛r˛T: (15.50)
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If T is a surface restriction of an ambient field T .t; Z/, then T .t; S/ may be
expressed as T .t; Z .t; S//. By the chain rule of multivariable calculus and tensor
calculus on stationary manifolds, we find:

PrT D @T .t; Z/

@t
C @T

@Zi

@Zi .t; S/

@t
� V ˛Zi

˛ri T: (15.51)

Since @T=@Zi D ri T and @Zi .t; S/ =@t D V i ,

PrT D �
V i � V ˛Zi

˛

	ri T: (15.52)

As we showed above while deriving PrR, the quantity in parentheses equals CN i .
We have thus arrived at the chain rule of the calculus of moving surfaces:

PrT D @T .t; Z/

@t
C CN iri T: (15.53)

This chain rule has a clear geometric interpretation illustrated in Fig. 15.3. It
states that the difference in the quantity T between the points A and P is due to two
influences: the difference of h @T=@t in the value of T due to the passage of time
and the difference of hCN iri T between the values of T at the points A and P at
time t .

15.7 Time Evolution of Integrals

The remarkable usefulness of the calculus of moving surfaces becomes evident
from two upcoming formulas (15.54) and (15.56) that govern the rates of change
of volume and surface integrals due to the deformation of the domain. Many critical
quantities in physics and engineering are represented by integrals. These quantities
include mass, energy, entropy, electrical current, and so forth. In applications one
often needs to find the rate of change in these quantities induced by changes in
the domain. In fact, most problems in the calculus of moving surfaces—whether
in shape optimization, boundary variations or physical applications—begin with an
integral expression. Thus, equations (15.54) and (15.56) are indispensable tools in
the analysis of moving surfaces.

Consider a Euclidean domain � with boundary S evolving with surface velocity
C . Figure 15.5 illustrates this discussion. Suppose that the invariant field, vector, or
scalar, F .t; Z/ depends on time and is sufficiently smooth within �. Then the rate
of change of the volume integral

R
�
Fd� is given by the formula

d

dt

Z
�

Fd� D
Z
�

@F

@t
d�C

Z
S

CFdS: (15.54)
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Fig. 15.5 Illustrations of the integral laws (15.54) and (15.56). The figure on the left shows the
annexed region that has a thickness proportional to C . The thicker portion of the boundary of the
figure on the right illustrates that the change in area is proportional to the mean curvature B˛

˛

The volume term on the right captures the rate of change of F and the surface term
captures the rate at which the moving boundary annexes or gives up the neighboring
regions. The annexing term is illustrated on the left of Fig. 15.5.

We give this law without a general proof, but I believe that this law is entirely
intuitive. Notice the similarities between this equation and the fundamental theorem
of calculus in the case when the integrand and integration domain depend on the
parameter t :

d

dt

Z b.t/

a

F .t; x/ dx D
Z b.t/

a

@F .t; x/

@t
dx C b0 .t/ F .t; b .t// : (15.55)

In fact, as an exercise below shows, a special case of equation (15.54) follows easily
from the fundamental theorem of calculus.

The other fundamental formula addresses the surface integral
R
S
FdS for an

invariant, vector or scalar, defined on the closed surface. The rate of change of this
integral is governed by the formula

d

dt

Z
S

FdS D
Z
S

PrF dS �
Z
S

CB˛
˛F dS: (15.56)

This formula was first given in [16]. The first term once again corresponds to the
rate of change in F . Notably, the operator that figures in this term is the invariant
time derivative Pr! It could hardly have been any other operator: the left-hand side
of equation (15.56) is coordinate-free, and therefore the result ought to consist only
of invariant elements.

In Chap. 14, we proved that the surface integral of the unit normal over a closed
surface vanishes

Z
S

NdS D 0: (15.57)
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As an example of using equation (15.56), we now show a special case of this
equation by means of the calculus of moving surfaces. Namely, we show that the
rate of change of this integral is zero

d

dt

Z
S

NdS D 0: (15.58)

By equation (15.56), we have

d

dt

Z
S

NdS D
Z
S

PrNdS �
Z
S

CB˛
˛NdS: (15.59)

According to the Thomas formula (15.48)

d

dt

Z
S

NdS D �
Z
S

S˛r˛CdS �
Z
S

CB˛
˛NdS: (15.60)

By Gauss’s theorem,

d

dt

Z
S

NdS D
Z
S

r˛S˛ C dS �
Z
S

CB˛
˛NdS: (15.61)

Because r˛S˛ D NB˛
˛ , the right-hand side vanishes and equation (15.58) is

confirmed. Since the integral of the unit normal over a sphere vanishes, we have
actually shown that it vanishes over all smooth surfaces of genus zero—that is, all
closed surfaces that can be obtained by a smooth deformation of a sphere.

Exercise 314. Show that

d

dt

Z
S

NB˛
˛ dS D 0:

You will enjoy this exercise as it draws upon virtually all of the surface identities,
including the Codazzi equation.

Exercise 315. Conclude that the integral

Z
S

NB˛
˛ dS (15.62)

vanishes over all closed smooth surfaces of genus zero.

Exercise 316. This exercise gives the proof of a special case of the volume law
(15.54). Suppose that, with a Cartesian coordinate system imposed, the planar
domain � is the region between two fixed values of x in the horizontal direction,
and between the x-axis and a positive time-dependent function b .t; x/ in the vertical
direction. Consider a time-independent function F .x; y/ and its area integral
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I D
Z
�

Fd� D
Z A2

A1

Z b.t;x/

0

F .x; y/ dydx: (15.63)

Use the fundamental theorem of calculus to show dI=dt is given by formula
(15.54).

15.8 A Need for Further Development

The definition (15.37) gives us an operator that produces invariants when applied to
invariants. However, for tensors of order greater than zero, the result of applying Pr
is not a tensor. The following exercises show this. Therefore, more work remains to
be done. The important task of constructing such an operator is undertaken in the
next chapter.

Exercise 317. For a tensor T i , derive the following transformation rule for the
variant U i D @T i .t; S/ =@t :

U i 0 D U iJ i
0

i C @T i

@S˛
J ˛t J

i 0

i C T iJ i
0

ij V
j C T iJ i

0

ij Z
j
˛J

˛
t : (15.64)

Exercise 318. For a tensor Ti , derive the following transformation rule for the
variant Ui D @Ti .t; S/ =@t :

Ui 0 D UiJ
i
i 0 C @Ti

@S˛
J ˛t J

i
i 0 C TiJ

i
i 0j 0V

j 0

: (15.65)

Exercise 319. For a tensor T ˛ , derive the following transformation rule for the
variant U˛ D @T ˛ .t; S/ =@t :

U˛0 D U˛J ˛
0

˛ C @T ˛

@Sˇ
J
ˇ
t J

˛0

˛ C T ˛J ˛
0

˛t C T ˛J ˛
0

˛ˇJ
ˇ
t : (15.66)

Exercise 320. For a tensor T˛0 , derive the following transformation rule for the
variant U˛0 D @T˛0 .t; S/ =@t W

U˛0 D U˛J
˛
˛0 C @T˛

@Sˇ
J
ˇ
t J

˛
˛0 C T˛J

˛
˛0t : (15.67)

Exercise 321. For a tensor T i , derive the following transformation rule for the
variant W i D @T i .t; S/ =@t � V ˛r˛T

i :

W i 0 D W iJ i
0

i � � k
ij T

iZj
˛J

˛
t J

i 0

k C T iJ i
0

ij V
j C T iJ i

0

ij Z
j
˛J

˛
t : (15.68)
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Exercise 322. For a tensor Ti , derive the following transformation rule for the
variant Wi D @Ti .t; S/ =@t � V ˛r˛Ti :

Wi 0 D WiJ
i
i 0 C �kjiZ

j
˛TkJ

˛
t J

i
i 0 C TiJ

i
i 0j 0V

j 0 � J ˛0

˛ J
˛
t r˛0Ti 0 : (15.69)

Exercise 323. For a tensor T ˛ , derive the following transformation rule for the
variant W ˛ D @T ˛ .t; S/ =@t � V ˇrˇT

˛:

W ˛0 D W ˛J ˛
0

˛ � �˛ˇ�T �J ˇt J ˛
0

˛ C T ˛J ˛
0

˛t C T ˛J ˛
0

˛ˇJ
ˇ
t : (15.70)

Exercise 324. For a tensor T˛0 , derive the following transformation rule for the
variant W˛0 D @T˛0 .t; S/ =@t � V ˇ0rˇ0T˛0 :

W˛0 D W˛J
˛
˛0 C �

�

˛ˇT�J
ˇ
t J

˛
˛0 C T˛J

˛
˛0t : (15.71)

15.9 Summary

In this chapter, we introduced the fundamental elements of the calculus of moving
surfaces. We defined the velocity of the surfaceC and a new time derivative operator
Pr that preserves the invariant property. The two fundamental formulas (15.54) and
(15.56) for differentiating integrals over deforming domains showed the importance
of developing the techniques of the calculus of moving surfaces.

The elements of the calculus of moving surfaces presented in this chapter are
only the beginning. The technique is not fully developed until the time derivative Pr
is extended to variants of arbitrary indicial signature. This is the central task of the
next chapter.



Chapter 16
Extension to Arbitrary Tensors

16.1 Preview

In Chap. 15, the invariant derivative operator Pr was defined for variants of order
zero. The new operator proved to have a number of essential features including the
tensor property—that is, producing tensor outputs for tensor inputs. Even with that
narrow definition, the new operator demonstrated its impressive utility in equations
(15.54) and (15.56) for evaluating the rates of change of volume and surface
integrals. However, analysis of all but a few problems is impossible, unless the new
derivative is extended to all objects encountered on surfaces which includes variants
with arbitrary indicial signatures. The development of this extension is the subject
of this chapter.

16.2 The Extension to Ambient Indices

The extension of Pr to variants with ambient indices can be induced if Pr is to satisfy
the following properties, the sum and product rules, commutativity with contraction,
and the metrinilic property with respect to the ambient basis Zi .

Consider the variant T of order zero

T D T iZi : (16.1)

If the desired properties hold, then

PrT D PrT i Zi : (16.2)

Exercise 325. Explain how each of the three desired properties contribute to the
validity of equation (16.2).

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
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On the left-hand side, the invariant derivative Pr is applied to a variant of order
zero and is therefore given by

PrT D @T
@t

� V ˛r˛T: (16.3)

Substitute equation (16.1) and apply the product rule:

PrT D @T i

@t
Zi C T i

@Zi
@t

� V �r�T
i Zi : (16.4)

Exercise 326. Show that

@Zi
@t

D �kij V
jZk: (16.5)

Therefore,

PrT D@T i

@t
Zi C T k�ikj V

jZi � V ˛r˛T
iZi : (16.6)

Equating this expression to the right-hand side of equation (16.2), we arrive at a
reasonable definition of Pr for a variant T i with a contravariant ambient index:

PrT i D @T i

@t
� V �r�T

i C V j�ijkT
k: (16.7)

Exercise 327. Show that similar reasoning leads to the following definition for a
tensor with a covariant ambient index

PrTi D @Ti

@t
� V �r�Ti � V j�kjiTk: (16.8)

Motivated by equations (16.7) and (16.8) we give the following definition for a
tensor T ij with a representative collection of ambient indices:

PrT ij D @T ij

@t
� V �r�T

i
j C V k�ikmT

m
j � V k�mkj T

i
m: (16.9)

Algorithmically, equation (16.9) is interpreted similarly to other definition of tensor
differential operators. The term �V �r� appears only once, and to each index there
corresponds a term containing the Christoffel symbols. The new extended operator
retains all of its properties, and it is left as exercises to demonstrate that it is so.

Exercise 328. Show that PrT i is a tensor for a tensor argument T i . You should
show this in two ways: by deriving the rule by which PrT i transforms under a change
of variables and by analyzing equation (16.3).
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Exercise 329. Similarly, show that PrTi is a tensor for a tensor argument Ti .

Exercise 330. Show that PrT ij is a tensor for a tensor operand T ij . Once again, there

are two ways of showing this: by deriving the rule by which PrT ij transforms under a

change of variables, and by leveraging the corresponding property for PrT i or PrTi .
Exercise 331. Conclude that Pr possesses the tensor property for arbitrary tensors
with ambient indices.

Exercise 332. Show that Pr commutes with contraction.

Exercise 333. Show that Pr satisfies the sum and product rules.

Exercise 334. Show that if T ij .t; Z/ is defined in the entire ambient space, then

the invariant derivative PrT ij applied to its surface restriction T ij .t; S/ satisfies the
chain rule

PrT ij D @T .t; Z/

@t
C CNkrkT

i
j : (16.10)

Exercise 335. Conclude that the invariant time derivative is metrinilic with respect
to the ambient metrics:

PrZi ; PrZi D 0 (16.11)

PrZij ; Prıij ; PrZij ; Pr"ijk; Pr"ijk D 0: (16.12)

16.3 The Extension to Surface Indices

Historically, the extension of the invariant time derivative to ambient indices
followed a long and winding path. Several incorrect attempts were made until a
proper definition was finally given in [16], where it referred to as the ı=ıt -derivative.
The operator Pr, as applied to variants with surface indices, was first defined in [20]
where its advantages over the ı=ıt -derivative was described.

The construction of the operator Pr for the ambient indices can proceed in a way
similar to the ambient indices. We stipulate that Pr satisfies the following properties:
the sum and product rules, commutativity with contraction and, when applied to S˛ ,
the result proportional to the normal N:

PrS˛ D A˛N: (16.13)

Consider the following variant T of order zero:

T D T ˛S˛: (16.14)



270 16 Extension to Arbitrary Tensors

If the desired properties hold, then

PrT D PrT ˛ S˛ C T ˛A˛N: (16.15)

The left-hand side can be analyzed by the definition of Pr as applied to invariants:

PrT D @T
@t

� V ˇrˇT: (16.16)

Substituting equation (16.14), we find

PrT D @ .T ˛S˛/
@t

� V ˇrˇ .T
˛S˛/ ; (16.17)

which, by the product rule, equation (11.16), and renaming ˛ ! ˇ in the second
term, yields

PrT D @T ˛

@t
S˛ C T ˇ

@Sˇ
@t

� V ˇrˇT
˛ S˛ � V ˇT ˛NBˇ˛: (16.18)

Exercise 336. Show that

@Sˇ
@t

D rˇV: (16.19)

Exercise 337. Thus,

@Sˇ
@t

D rˇ .V
˛S˛ C CN/ : (16.20)

Exercise 338. Expand the right-hand side and show that

@Sˇ
@t

D rˇV
˛S˛ C V ˛NBˇ˛ C NrˇC � CB˛

ˇS˛: (16.21)

Exercise 339. Show that substituting this result into equation (16.18), yields

PrT D @T ˛

@t
S˛ C T ˇrˇV

˛S˛ C T ˛r˛CN � T ˇCB˛
ˇS˛ � V ˇrˇT

˛ S˛: (16.22)

Comparing this result to equation (16.17) yields the definition of Pr for T ˛

PrT ˛ D @T ˛

@t
� V ˇrˇT

˛ C
�
rˇV

˛ � CB˛
ˇ

�
T ˇ; (16.23)
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as well as the expected formula for PrS˛:

PrS˛ D Nr˛C: (16.24)

Exercise 340. Show that the same approach suggests the following definition for
covariant arguments:

PrT˛ D @T˛

@t
� V ˇrˇT˛ � �r˛V

ˇ � CBˇ
˛

	
Tˇ: (16.25)

16.4 The General Invariant Derivative Pr

We are now ready to give the full definition of Pr for arbitrary tensors. We combine
equations (16.7), (16.8), (16.23), and (16.25) for each type of index and give the
following definition for the operator Pr for a variant T i˛jˇ with a representative

collection of indices. Define the Christoffel symbol P�˛ˇ for moving surfaces as

P�˛ˇ D rˇV
˛ � CB˛

ˇ : (16.26)

Then the definition for the operator Pr as applied to T i˛jˇ is:

PrT i˛jˇ D @T i˛jˇ

@t
�V �r�T

i˛
jˇ CV k�ikmT

m˛
jˇ �V k�mkj T

i˛
mˇC P�˛!T i!jˇ � P�!ˇ T i˛j! : (16.27)

The proofs of these properties of Pr are left as exercises.

1. The operator Pr produces tensor outputs for tensor inputs
2. The operator Pr commutes with contraction
3. The operator Pr satisfies the sum and product rules
4. The operator Pr satisfies the chain rule. That is, if T ij .t; Z/ is defined in the entire

ambient space, then Pr applied to its surface restriction T ij .t; S/ satisfies the
chain rule

PrT ij D @T .t; Z/

@t
C CNkrkT

i
j : (16.28)

5. The operator Pr is metrinilic with respect to the ambient metrics

PrZi ; PrZi D 0 (16.29)

PrZij ; PrZij ; Prıij ; Pr"ijk; Pr"ijk D 0: (16.30)
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6. The invariant derivative Pr does not commute with the surface derivative r˛ . The
general rule for the commutator Prr˛ � r˛

Pr depends on the indicial signature
of the variant to which it is applied. For variants T of order zero, the rule reads

� Prr˛ � r˛
Pr
�
T D �CB!

˛ r!T: (16.31)

Next, we evaluate the invariant time derivative for the fundamental differential
objects on moving surfaces.

16.5 The Formula for PrS˛

By the definition (16.27), we have

PrS˛ D @S˛
@t

� V !r!S˛ � �r˛V
! � CB!

˛

	
S!: (16.32)

By equation (11.16), this becomes

PrS˛ D r˛V � V !NB!˛ � �r˛V
! � CB!

˛

	
S!: (16.33)

Decompose V in tangential and normal components:

PrS˛ D r˛ .V
!S! C CN/ � V �NB�˛ � �r˛V

! � CB!
˛

	
S!: (16.34)

Apply the product rule to the first term. Several terms cancel and we find the final
formula

PrS˛ D Nr˛C: (16.35)

The metrinilic property of Pr with respect to Zi yields the following component form
of equation (16.35)

rZi
˛ D N ir˛C: (16.36)

This completes perhaps the most challenging derivation of this chapter. The rest
of the fundamental differential relationships follow relatively easily from equations
(16.35) and (16.36).
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16.6 The Metrinilic Property of Pr

The metrinilic property of the invariant derivative Pr is similar to that of the covariant
surface derivative r˛ . That is, the metrinilic property holds when applied to ambient
and surface metrics with the exception of S˛ and S˛ . The metrinilic property with
respect to the ambient metrics follows from the chain rule and has been established
above. In this section, we focus on the metrinilic property with respect to the surface
metrics.

For the covariant basis S˛ˇ , we have

PrS˛ˇ D Pr �
S˛ � Sˇ

	 D PrS˛ � Sˇ C S˛ � PrSˇ: (16.37)

By equation (16.35), we find

PrS˛ˇ D Nr˛C � Sˇ C S˛ � NrˇC: (16.38)

Therefore, the result is zero by orthogonality of N and S˛:

PrS˛ˇ D 0: (16.39)

To prove that Prı˛ˇ vanishes, we appeal to the definition (16.27):

Prı˛ˇ D @ı˛ˇ

@t
� V !r!ı

˛
ˇ C �˛!ı

!
ˇ � �!ˇ ı˛!: (16.40)

Each of the first two terms vanish, while the third and the fourth terms cancel each
other. Therefore

Prı˛ˇ D 0: (16.41)

To show that PrS˛ˇ vanishes, apply Pr to the identity S˛ˇSˇ� D ı˛� . By equation
(16.41)

Pr �
S˛ˇSˇ�

	 D 0: (16.42)

By the product rule,

PrS˛ˇ Sˇ� C S˛ˇ PrSˇ� D 0; (16.43)

and by equation (16.39),

PrS˛ˇ Sˇ� D 0 (16.44)
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which immediately yields

PrS˛ˇ D 0: (16.45)

The metrinilic property of the Pr with respect to the surface bases S˛ˇ and S˛ˇ

allows the juggling of indices under Pr. For example, by raising the covariant index
in equation (16.35), we find

PrS˛ D Nr˛C: (16.46)

Similarly, by raising the covariant index in equation (16.36), we find

rZi˛ D N ir˛C: (16.47)

Exercise 341. Show from equation (16.39) that

@S˛ˇ

@t
D r˛Vˇ C rˇV˛ � 2CB˛ˇ (16.48)

and from equation (16.45) that

@S˛ˇ

@t
D �r˛V ˇ � rˇV ˛ C 2CB˛ˇ: (16.49)

Exercise 342. Show that

@S

@t
D 2S

�r˛V
˛ � CB˛

˛

	
(16.50)

and therefore

@
p
S

@t
D p

S
�r˛V

˛ � CB˛
˛

	
: (16.51)

and

@
�
1=

p
S
�

@t
D � 1p

S

�r˛V
˛ � CB˛

˛

	
: (16.52)

Exercise 343. Show that

@"˛ˇ

@t
D "˛ˇ

�
r�V

� � CB�
�

�
: (16.53)
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Exercise 344. Show that

@"˛ˇ

@t
D �"˛ˇ

�
r�V

� � CB�
�

�
: (16.54)

The two preceding exercises enable us to consider the Levi-Civita symbols "˛ˇ
and "˛ˇ . By definition (16.27),

Pr"˛ˇ D @"˛ˇ

@t
� V �r�"˛ˇ � P�!˛ "!ˇ � P�!ˇ "˛!: (16.55)

The first term is found in equation (16.53), the second term vanishes, and the
remaining terms are expanded according to the definition (16.26) of P�˛ˇ :

Pr"˛ˇ D
�
r�V

� � CB�
�

�
"˛ˇ � �r˛V

! � CB!
˛

	
"!ˇ �

�
rˇV

! � CB!
ˇ

�
"˛!:

(16.56)
To show that the right-hand side vanishes, consider Pr"12:

Pr"12 D
�
r�V

� � CB�
�

�
"12�

�r1V
! � CB!

1

	
"!2�

�r2V
! � CB!

2

	
"1!: (16.57)

Keep the nonzero terms on the right-hand side

Pr"12 D
�
r�V

� � CB�
� � r1V

1 C CB1
1 � r2V

2 C CB2
2

�
"12: (16.58)

It is clear that this sum vanishes which shows that Pr"12 D 0. The other four entries
of the tensor Pr"˛ˇ can be analyzed in a similar fashion and we conclude that

Pr"˛ˇ D 0: (16.59)

The metrinilic property of Pr with respect to the contravariant Levi-Civita symbol
"˛ˇ is left as an exercise.

Exercise 345. Show that

Pr"˛ˇ D 0: (16.60)

16.7 The Formula for PrN

From equation (16.35) it is easy to obtain the formula for PrN. Dot both sides of
(16.35) with N:

N � PrS˛ D r˛C: (16.61)
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By the product rule,

� PrN � S˛ D r˛C: (16.62)

Therefore

PrN D �S˛r˛C: (16.63)

Equation (16.63) is called the Thomas formula for Tracy Thomas who was the first
to derive it. In component form, the Thomas formula reads

PrN i D �Zi
˛r˛C: (16.64)

16.8 The Formula for PrB˛
ˇ

Start with equation

B˛
ˇ D �S˛ � rˇN; (16.65)

which is the vector form of equation (12.41). Apply Pr to both sides:

PrB˛
ˇ D � PrS˛ � rˇN � S˛ � PrrˇN: (16.66)

By equation (16.31), we find

PrB˛
ˇ D � PrS˛ � rˇN � S˛ � rˇ

PrN � S˛ � CB!
ˇ r!N: (16.67)

Since the first and the third terms cancel, the formula for PrB˛
ˇ reads

PrB˛
ˇ D r˛rˇC C CB˛

� B
�

ˇ : (16.68)

This formula is found in [16]. Contracting the free indices yields the previously
mentioned equation (15.49)

PrB˛
˛ D r˛r˛C C CB˛

ˇB
ˇ
˛ : (15.49)

Exercise 346. Show that the formula for the derivative of the Gaussian curvature
K reads

PrK D B˛
˛rˇrˇC � B˛

ˇr˛rˇC C CKB˛
˛ : (16.69)

In the next chapter, this formula is used to prove a version of the Gauss–Bonnet
theorem.
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16.9 Summary

In this chapter, we extended the invariant time derivative Pr to variants arbitrary
indicial signature. The general definition of Pr is given in equation (16.27). In
summary, we give the differentiation table of the calculus of moving surfaces:

PrZi ; PrZi D 0 (16.70)

PrZij ; PrZij ; Prıij D 0 (16.71)

Pr"ijk; Pr"ijk D 0 (16.72)

PrS˛ D Nr˛C (16.73)

PrN D �S˛r˛C (16.74)

PrZi
˛ D N ir˛C (16.75)

PrS˛ˇ; PrS˛ˇ; Prı˛ˇ D 0 (16.76)

Pr"˛ˇ; Pr"˛ˇ D 0 (16.77)

PrBˇ
˛ D r˛rˇC C CB�

˛B
ˇ
� (16.78)



Chapter 17
Applications of the Calculus of Moving Surfaces

17.1 Preview

The applications of the calculus of moving surfaces are remarkably broad. Of
course, many of the applications come from problems in physics and engineering
in which physical surfaces move. On the other hand, numerous applications come
from problems in which, at least in the statement of the problem, there are no moving
surfaces. There are at least three categories of such problems: shape optimization,
boundary perturbation, and a third category illustrated by the proof of a version of
the Gauss–Bonnet theorem.

Shape optimization is a topic in the calculus of variations, in which a certain
quantity is minimized with respect to a function. In shape optimization, the unknown
function is the shape of a domain. The central idea in the calculus of variations is
to reduce what is essentially an infinite-dimensional optimization problem to a one-
dimensional problem by introducing a smooth family of functions, parameterized
by a single variable t , and then searching for the best function in the given family.
When this idea is carried over to shape optimization, a smooth family of functions
becomes a smooth family of shapes. In other words, we are dealing with a moving
surface!

A classical shape optimization problem in finding a surface of minimal surface
area that has a given contour boundary. Such surfaces are called minimal. We show
that minimal surfaces are characterized by zero mean curvature B˛

˛ . We also derive
the geodesic equation.

Boundary perturbation problems often arise in the study of partial differential
equations. Suppose that a boundary value problem has been solved on some domain
� and let  denote the solution. It is often necessary to solve a similar problem on
another domain ��, the solution being  �. An approximation to  � can be found
by constructing an evolution of domains �t (now we have a moving surface!) that
starts as � at time zero and arrives at �� at a later time t�. Let  t be solution
to the boundary value problem on �t . Then at t D 0,  t coincides with  and
at t D t�,  t coincides with  �. The calculus of moving surfaces provides tools

P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving Surfaces,
DOI 10.1007/978-1-4614-7867-6 17, © Springer Science+Business Media New York 2013
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for expressing the derivatives of  t with respect to time. The derivatives of  t can
typically be evaluated at time t D 0, thereby enabling us to form a Taylor series
approximation for  �.

In the last category of problems, moving surfaces are introduced as an artificial
device. Consider the statement of the celebrated Gauss–Bonnet theorem. In its
simplest form, it states that for a closed smooth surface S of genus zero (that is,
without bagel-like holes), the integral of Gaussian curvature K is independent of
the shape and equals 4� :

Z
S

KdS D 4�: (17.1)

The integral of K is called the total curvature of the surface. It is easy to verify that
the Gauss–Bonnet theorem holds for a unit sphere. For an arbitrary smooth surface
S of genus zero, we can construct a smooth evolution from the unit sphere to S
and show that the rate of change in the total curvature vanishes. Therefore, the total
curvature of S is 4� as well. What a nice and unexpected application of the calculus
of moving surfaces!

17.2 Shape Optimization

17.2.1 The Minimal Surface Equation

A classical problem in shape optimization is to find a surface S of least possible
area that spans a prescribed contour boundary � in three dimensions. This problem
has a long and rich history. A discussion of this problem is included in almost every
text on the calculus of variations. The reader might recall a lengthy derivation of the
governing equation based on the Euler–Lagrange equation.

In shape optimization problems such as this one, the calculus of moving surfaces
shines at its brightest (perhaps by contrast with the alternative methods). With the
help of the calculus of moving surfaces, the governing equation is derived in a
single line. Consider a one-parameter family of surfaces S .t/, each spanned by
a stationary contour � . In the following discussion, we omit the reference to the
parameter t and denote the family of surfaces simply by S . The area A of S is given
by the integral

A D
Z
S

dS: (17.2)

Differentiating with respect to t , we find by equation (15.56)

dA

dt
D �

Z
S

CB˛
˛ dS: (17.3)
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Since, for an optimal surface, dA=dt must vanish for all independent variations and
since C can be chosen arbitrarily, the equilibrium equation reads

B˛
˛ D 0: (17.4)

In words, a minimum surface has zero mean curvature.
Two aspects of this derivation are noteworthy. First is its remarkable compact-

ness, which shows that the calculus of moving surfaces is ideally suited to this type
of problems. Second is that the derivation and therefore equation (17.4) are valid for
hypersurfaces in a Euclidean space of arbitrary dimension. For example, in a two-
dimensional Euclidean space, surface area corresponds to contour length. Therefore,
not surprisingly, equation (17.4) tells us that a minimal surface is a straight line.

17.2.2 The Isoperimetric Problem

The classical isoperimetric problem is to find a surface of least surface area that
encloses a given volume V . The constraint is accounted for by introducing a
Lagrange multiplier �:

E D
Z
S

dS C �

�Z
�

d� � V
�
: (17.5)

The derivative of E reads

dE

dt
D
Z
S

C
��B˛

˛ C �
	
dS: (17.6)

Therefore, the equilibrium equation reads

B˛
˛ D �: (17.7)

In words, a minimal surface that incloses a given volume has constant mean
curvature.

It is easy to see that a sphere of radius R, such that 4�R3=3 D V , satisfies this
condition and the constraint, since for a sphere in three dimensions, B˛

˛ D �2=R,
the equilibrium configuration has

� D � 2

R
: (17.8)

The equilibrium equations (17.4) and (17.7) constitute necessary, but not suffi-
cient conditions for a minimum. A shape satisfying equation (17.4) or (17.7) may
yield a maximum or a stationary point. The sign of the second derivative d2E=dt2

can help distinguish between local minima, maxima, and stationary points.
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17.2.3 The Second Variation Analysis for the Isoperimetric
Problem

Apply equation (15.54) to (17.6)

d2E

dt2
D
Z
S

Pr �
C
��B˛

˛ C �
		
dS �

Z
S

C 2B
ˇ

ˇ

��B˛
˛ C �

	
dS: (17.9)

By the product rule, the first integral becomes

d2E

dt2
D
Z
S

PrC ��B˛
˛ C �

	
dSC

Z
S

C Pr ��B˛
˛C�	 dS �

Z
S

C 2B
ˇ

ˇ

��B˛
˛ C �

	
dS:

(17.10)

We are interested in evaluating d2E=dt2 for the equilibrium configuration that
satisfies equation (17.7). Therefore, the first and the third integrals in (17.10) vanish:

d2E

dt2
D
Z
S

C Pr ��B˛
˛ C �

	
dS: (17.11)

By equation (15.49),

d2E

dt2
D
Z
S

�
�Cr˛r˛C � C2B˛

ˇB
ˇ
˛

�
dS: (17.12)

By Gauss’s theorem,

d2E

dt2
D
Z
S

�
r˛Cr˛C � C2B˛

ˇB
ˇ
˛

�
dS: (17.13)

The first term in equation (17.13) is positive (or zero) and the second is negative for
any nontrivial C .

Equation (17.12) is best for determining the sign of d2E=dt2 for a general
variation C . Decompose C as a series in spherical harmonics Ylm

C D
X

l>0; jmj�l
ClmYlm; (17.14)

where l D 0 is disallowed because it violates the volume constraint. Spherical
harmonics Ylm are eigenvalues of the surface Laplacian

r˛r˛Ylm D � l .l C 1/

R2
(17.15)
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and form an orthonormal set on the unit sphere S0

Z
S0

Yl1m1Yl2m2dS D


1, if l1 D l2 and m1 D m2

0, otherwise
: (17.16)

For a sphere of radius R, we have

B˛
ˇB

ˇ
˛ D 2

R2
: (17.17)

Substituting these relationships into equation (17.12), we find

d2E

dt2
D 4�

X
l>0;m

C 2
lm .l � 1/ .l C 2/ : (17.18)

The spherical harmonic Y00 .	; 
/ D .4�/�1=2, which corresponds to l D 0, is
excluded because

R
Y00dS > 0 and it violates the constant area constraint. From

this expression, we conclude that the sphere is neutrally stable (d2E=dt2 D 0) with
respect to translation as a rigid body (l D 1) and is stable (d2E=dt2 > 0) with
respect to all other smooth deformations.

17.2.4 The Geodesic Equation

Consider two points A and B on a two-dimensional surface S characterized by the
metric tensor S˛ˇ . A geodesic is the shortest surface curve that connects A and B .
Let the geodesic be given parametrically by

S˛ D S˛ .U / : (17.19)

A common derivation [31] of the equation characterizing geodesics is based on
formulating the Euler–Lagrange equations for the arithmetic integral that yields the
length of the curve

L D
Z ˇ

˛

s
S˛ˇ

dS˛

dU

dSˇ

dU
dU: (17.20)

We outline a different approach based on minimal surfaces. After all, geodesic
is a minimal hypersurface and must therefore be characterized by an equation
analogous to (17.4). The difficulty lies in the fact that equation (17.4) is valid
for minimal surfaces embedded in Euclidean spaces. Meanwhile, the surface S
is not a Euclidean space. Nevertheless, we state (without proof) that the general
definition (16.27) of the invariant time derivative Pr remains valid in Riemann
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spaces. Furthermore, the law (15.56) governing the time evolution of surface
integrals remains valid as well. Therefore, the derivation of Sect. 17.2.1 continues to
apply to minimal surfaces in Riemann spaces. We reach the conclusion that minimal
surfaces in Riemann spaces are characterized by zero mean curvature. When
applied to one-dimensional curves embedded in two-dimensional surfaces, the term
mean curvature becomes geodesic curvature. This was discussed in Sect. 13.9.
Thus, geodesics are characterized by zero geodesic curvature:

bˆˆ D 0: (17.21)

Equation (17.21) is known as the geodesic equation or equation of a geodesic.
Let us translate equation (17.21) into an explicit equation for S˛ .U /. Multiply

both sides of equation (17.21) by n˛

bˆˆn
˛ D 0 (17.22)

and recall that bˆˆn
˛ is given by

bˆˆn˛ D Uˆ‰rˆS
˛
‰: (17.23)

Therefore, equation (17.21) is equivalent to

Uˆ‰rˆS
˛
‰ D 0: (17.24)

Expanding the covariant derivative rˆ, we find

Uˆ‰

�
@S˛‰
@Uˆ

C S
ˇ
ˆ�

˛
ˇ�S

�
‰ � ��ˆ‰S˛�

�
D 0: (17.25)

In terms of S˛ .U /, this equation reads

Uˆ‰

�
@2S˛

@Uˆ@U‰
C �˛ˇ�

@Sˇ

@Uˆ

@S�

@U‰
� ��ˆ‰

@S˛

@U�

�
D 0: (17.26)

Equation (17.26) characterizes minimal hypersurfaces of Riemann spaces of arbi-
trary dimension. Note that ˛ is a free index and therefore there is a single equation
for each S˛ .U /. In order to adapt this equation to the case of one-dimensional
curves, denote by Q� the single entry of the Christoffel tensor ��ˆ‰ on the curve and
cancel U 11:

d2S˛

dU2
C �˛ˇ�

dSˇ

dU

dS�

dU
� Q� dS˛

dU
D 0: (17.27)

Finally, if the curve is referred to arc length s, Q� vanishes and equation (17.27) reads

d2S˛

ds2
C �˛ˇ�

dSˇ

ds

dS�

ds
D 0: (17.28)
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Equation (17.28) gives the form in which the geodesic equation usually appears.
Letting

T ˛ D dS˛

ds
; (17.29)

denote the unit tangent, equation (17.28) may be written in the form

ıT ˛

ıs
D 0: (17.30)

In words, the unit tangent forms a parallel vector field (in the sense of Sects. 8.9
and 12.7) along a geodesic referred to the arc length s.

17.3 Evolution of Boundary Conditions in Boundary
Value Problems

A boundary value problem is solved on a domain� with boundary S . The unknown
function u is determined by a partial differential equation inside � and a boundary
condition prescribed on the boundary S . The classical boundary value problem is
the Poisson equation

rir iu D f; (17.31)

where f is a known function on �.
There are three fundamental types of boundary conditions. Dirichlet boundary

conditions prescribe the value of the function u along the boundary S . Our focus is
the zero Dirichlet boundary conditions

ujS D 0: (17.32)

Neumann boundary conditions prescribe the value of the normal derivative along S .
Our focus is once again the zero Neumann condition

N iriu D 0: (17.33)

Finally, mixed boundary conditions prescribe the value of a linear combinationAuC
BN iriu of the function u and its normal derivative N iriu. The quantities A and
B may be variable functions on the boundary. We focus on the case where A is a
constant, B D 1 and the prescribed value is zero

Au CN iriu D 0: (17.34)
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Suppose that the domain� evolves with time t and that u .t; Z/ is the solution to
a particular boundary value problem subject to one of the three fundamental types of
boundary conditions. Our goal is to derive the boundary value problem that governs
the rate of change

u1 D @u .t; Z/

@t
(17.35)

of u .t; Z/. Regardless of the differential relationship that u .t; Z/ satisfies in the
interior of �, the boundary conditions for u1 can be determined from the boundary
conditions for u. In each case, the boundary condition is derived by applying the Pr
operator to the boundary condition for u.

For Dirichlet boundary conditions (17.32), an application of Pr yields

Pru D 0: (17.36)

Expanding, we find

@u

@t
C CN iriu D 0; (17.37)

or

u1 D �CN iriu: (17.38)

Thus, we conclude that Dirichlet boundary conditions for u result in Dirichlet
boundary conditions for u1.

For Neumann boundary conditions (17.33), we find

Pr �
N iriu

	 D 0: (17.39)

By the product rule and the Thomas rule (16.64), we find

�Zi
˛r˛Criu CN i Prriu D 0: (17.40)

Apply the chain rule (15.53) to the expression Prriu:

Prriu D @

@t
riu C CNjrjriu: (17.41)

Since the covariant derivative ri commutes with the partial derivative @=@t , we have

Prriu D riu1 C CNjrjriu: (17.42)

We thus arrive at the following condition for u1

N iriu1 D Zi
˛r˛Criu � CN iN jrirj u: (17.43)
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or, equivalently,

N iriu1 D r˛Cr˛u � CN iN jrirj u: (17.44)

Thus, similarly to the Dirichlet case, Neumann boundary conditions for u lead to
Neumann boundary conditions for u1.

Finally, we turn to mixed boundary conditions (17.34) for constant A and B .
Applying the Pr operator to equation (17.34), we find

A Pru C B Pr �
N iriu

	 D 0: (17.45)

Combining the analyses of the Dirichlet and Neumann cases, we find

Au1 C BN iriu1 D �ACN iriu C Br˛Cr˛u � CBN iN jrjriu: (17.46)

Thus, mixed conditions for u lead to mixed conditions for u1.

17.4 Eigenvalue Evolution and the Hadamard Formula

In this section, we study the dependence of Laplace eigenvalues on shape. More
specifically, we analyze the rate of change in the eigenvalue induced by smooth
deformations of the domain. The eigenvalues � are determined by the Laplace
eigenvalue equation

rir iu D ��u (17.47)

in combination with Dirichlet (17.32), Neumann (17.33), or mixed (17.34) boundary
condition on the boundary S of the domain � on which the interior condition
(17.47) is to be satisfied. The interior equation and the boundary condition, define
the eigenfunction u to within a multiplicative constant. The usual way to remove
this arbitrariness is to normalize the eigenfunction to unity according to equation

Z
�

u2d� D 1: (17.48)

With the normalization condition in place, the eigenfunction u is determined to
within a sign.

When the domain �, with its boundary S , evolve as a function of time t , so
do the Laplace eigenvalues �. If we denote the evolution of the domain by �.t/
and S .t/ and the evolution of the eigenvalues by � .t/, our goal is to determine the
expression for the time derivative �1 of � .t/:

�1 D d� .t/

dt
: (17.49)



288 17 Applications of the Calculus of Moving Surfaces

The eigenvalue � corresponding to the eigenfunction u is given by the Rayleigh
quotient

� D
R
�

riur iud�R
�

u2d�
: (17.50)

Since we have introduced the normalization condition (17.48), the Rayleigh quotient
reduces to its numerator

� D
Z
�

riur iud�: (17.51)

The Rayleigh quotient is the starting point of our analysis. However, let us save
this analysis for last and first determine the relationships that the interior equation
(17.47) and the normalization condition (17.48) imply about the time derivative u1
of the eigenfunction u:

u1 .t; Z/ D @u .t; Z/

@t
: (17.52)

The function u1 is called the first variation of the eigenfunction u.
Differentiate the interior equation (17.47) with respect to time

@

@t
rir iu .t; Z/ D � @

@t
.� .t/ u .t; Z// : (17.53)

It is left as an exercise to show that the covariant and contravariant derivatives ri

and r i commute with partial time differentiation. The right-hand side is expanded
by the product rule. The result is

rir iu1 D ��1u � �u1: (17.54)

Transferring the term ��u1 to the left-hand side, we obtain the final equation for u1

rir iu1 C �u1 D ��1u: (17.55)

Therefore, the first variation of the eigenfunction satisfies an inhomogeneous
Helmholtz equation.

The normalization condition (17.48) also gives us information regarding u1.
Differentiate equation (17.48) with respect to time t :

d

dt

Z
�

u2d� D 0: (17.56)
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By equation (15.54), we find

Z
�

2uu1d�C
Z
S

Cu2dS D 0: (17.57)

Under Dirichlet conditions (17.32), the surface integral vanishes identically in
time. Therefore, under Dirichlet conditions, the first eigenfunction variation u1 is
orthogonal to the eigenfunction u in the sense

Z
�

uu1d� D 0: (17.58)

We are now in a position to derive the Hadamard formula for �1. Let us begin
with Dirichlet conditions. As we started before, our starting point is the Rayleigh
quotient (17.51). Applying the ordinary time derivative, we have

�1 D d

dt

Z
�

riur iud�: (17.59)

By the volume integral law (15.54), we have

�1 D
Z
�

@
�riur iu

	
@t

d�C
Z
S

Criur iudS: (17.60)

By a combination of the product rule and the fact that partial differentiation
commutes with covariant differentiation, we find

�1 D
Z
�

2riur iu1d�C
Z
S

Criur iudS: (17.61)

Use Gauss’s theorem to transfer the covariant derivative r i from u to riu1:

�1 D 2

Z
S

u Nir iu1dS � 2
Z
�

urir iu1d�C
Z
S

Criur iudS: (17.62)

By the Dirichlet condition (17.32) the first surface integral vanishes. Furthermore,
equation (17.54) gives us an expression for rir iu1. Thus

�1 D 2

Z
�

�
�1u

2 C �uu1
	
d�C

Z
S

Criur iudS: (17.63)

Split the first integral into two:

�1 D 2�1

Z
�

u2d�C 2�

Z
�

uu1d�C
Z
S

Criur iudS: (17.64)
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The first term equals 2�1 by the normalization condition (17.48). The second term
vanishes by equation (17.58). We have therefore arrived at the following expression
for �1

�1 D �
Z
S

Criur iudS: (17.65)

This result is known as the Hadamard formula.

Exercise 347. Show that, under sufficient conditions of smoothness, the partial
time derivative @=@t commutes with the covariant derivative riu.

Exercise 348. The Laplace eigenfunctions corresponding to the simple eigenvalues
on the unit circle under Dirichlet boundary conditions are given by

u .r; 	/ D J0 .
r/p
�J1 .
/

; (17.66)

where Jn are Bessel functions of the first kind and 
 is a root of J0. Note that the
Bessel functions J0 and J1 are connected by the relationship

J 0
0 .x/ D �J1 .x/ : (17.67)

Consider the following evolution from the unit circle to an ellipse with semi-axes
1C a and 1C b:



x .t; ˛/ D .1C at/ cos˛
y .t; ˛/ D .1C bt/ sin˛

(17.68)

Show that at t D 0, according to the Hadamard formula, we have

�1 D � .aC b/ �: (17.69)

Exercise 349. Show that equation (17.69) can be derived without the calculus of
moving surfaces by appealing to Euler’s homogeneous function theorem. (Hint:
Laplace eigenvalues are homogeneous functions of the ellipse semi-axis lengths).

We now derive the expression for u1 under Neumann conditions. We once again
start with the Rayleigh quotient and, by applying d=dt , arrive at the following
equation

�1 D
Z
�

2riur iui d�C
Z
S

Criur iudS: (17.70)

This time, we use Gauss’s theorem to transfer the covariant derivative ri from u1 to
r iu:
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�1 D 2

Z
S

u1 Nir iudS � 2
Z
�

u1rir iud�C
Z
S

Criur iudS: (17.71)

The first integral vanishes by the Neumann condition (17.33). In the second integral,
substitute ��u for rir iu by equation (17.47):

�1 D 2�

Z
�

uu1d�C
Z
S

Criur iudS: (17.72)

Since the first integral is given by equation (17.57), we arrive at the final expression

�1 D
Z
S

C
�riur iu � �u2

	
dS: (17.73)

This equation is known as the Hadamard formula for Neumann boundary
conditions.

Derivation of the Hadamard formula under mixed conditions is left as an
exercise.

Exercise 350. Show that, under all boundary conditions among (17.32), (17.33),
and (17.34),

�1 D
Z
S

�
u1Nir iu � u Nir iu1

	
dS: (17.74)

Exercise 351. Use the divergence theorem to convert equation (17.74) to the
following form

�1 D
Z
�

�
urir iu1 � u1rir iu

	
d�: (17.75)

Exercise 352. Derive the Hadamard formula for mixed boundary conditions

�0 D
Z
S

C
��riur iu C 2r˛ur˛u � �u2 C B˛

˛ u Nir iu
	
dS (17.76)

Exercise 353. Show that the Hadamard formula (17.76) reduces to equation
(17.65) under Dirichlet conditions and equation (17.73) under Neumann conditions.

17.5 A Proof of the Gauss–Bonnet Theorem

Our proof of a special case of the Gauss–Bonnet theorem is a particularly neat
application of the calculus of moving surfaces. After all, the Gauss–Bonnet theorem
is a result in classical differential geometry on stationary manifolds. There are no
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moving surfaces in sight! Nevertheless, we reformulate the Gauss–Bonnet theorem
as a problem in moving surfaces. The presented proof is excellent as a final
demonstration in this book as it draws on many of the fundamental relationships
in tensor calculus and the calculus of moving surfaces.

The Gauss–Bonnet theorem states that the integral of Gaussian curvature over a
closed surface is independent of its shape and only depends on its genus. The genus
(genera in plural) of a surface is a topological concept. In plain language, the genus
of a closed surface is the number of holes that it has. Thus, a sphere is a surface
of genus zero and a torus is a surface of genus one. If g is the genus of the closed
surface S , the Gauss–Bonnet theorem states that

Z
S

KdS D 4� .1 � g/ : (17.77)

Thus, for surfaces of genus zero

Z
S

KdS D 4� (17.78)

and for surfaces of genus one

Z
S

KdS D 0: (17.79)

Equation (17.77) is a special case of the Gauss–Bonnet theorem. A more general
Gauss–Bonnet theorem holds for nonclosed surfaces with contour boundaries.
Furthermore, the Gauss–Bonnet holds for general two-dimensional Riemannian
manifolds in the intrinsic sense—that is, without a reference to an embedding.
Finally, in topology, the Gauss–Bonnet theorem is formulated in an even more
general setting that makes no reference to the Riemannian metric.

We can prove our special case of the Gauss–Bonnet theorem by showing that the
integral of Gaussian curvature

T D
Z
S

KdS;

known as the total curvature, is unchanged under sufficiently smooth evolutions.
This would show that T is independent of shape, but does not quite prove that T D
4� .1 � g/. However, for surfaces of genera zero and one, this can be verified by
calculating T for a sphere and a torus. For surfaces of higher genera, the result can
be argued (although this is not as simple as it may seem) by induction by annexing
a torus to a surface of genus g to obtain a surface of genus g C 1.

So, our goal is to show that, under a smooth evolution, the total curvature T is
unchanged:
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d

dt

Z
S

KdS D 0: (17.80)

By the surface integral law (15.56), we have

d

dt

Z
S

KdS D
Z
S

PrKdS �
Z
S

CKB˛
˛ dS: (17.81)

Recall from Chap. 16 that PrK is given by the beautiful formula

PrK D B˛
˛rˇrˇC � B˛

ˇr˛rˇC C CKB˛
˛ : (16.69)

Therefore, equation (17.81) becomes

d

dt

Z
S

KdS D
Z
S

�
B˛
˛rˇrˇC � B˛

ˇr˛rˇC
�
dS: (17.82)

We next apply Gauss’s theorem to each of the terms in the integral on the right-
hand side. In the first term, we use Gauss’s theorem to transfer rˇ from rˇ to B˛

˛ .
In the second integral, Gauss’s theorem helps transfer r˛ from rˇC to B˛

ˇ . Since
the surface is closed, there arise no contour integrals. As a result, we arrive at the
following expression

d

dt

Z
S

KdS D
Z
S

�
�rˇB

˛
˛ C r˛B

˛
ˇ

�
rˇCdS: (17.83)

We next use the Codazzi identity

r˛Bˇ� D rˇB˛� : (12.73)

derived in Chap. 12. By raising the index � and contracting it with ˛, we find

r˛B
˛
ˇ D rˇB

˛
˛ : (17.84)

Therefore, the integrand in (17.83) vanishes and equation (17.80) is confirmed!

17.6 The Dynamic Fluid Film Equations

Finally, we come to a dynamic application of the calculus of moving surfaces, and
one that is perhaps closest to the author’s heart. We discuss the exact equations for
the dynamics of free fluid films under the influence of surface tension. We consider a
fluid film that spans a stationary three-dimensional smooth curved contour. The free
fluid film is modeled as a two-dimensional surface S with a thickness represented
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by variable surface mass density 
. We decompose the fluid film velocity V in the
normal component C and the tangential components V ˛

V D CN C V ˛S˛: (17.85)

The potential energy of the fluid film is captured by Laplace’s model of surface
tension

P D �

Z
S

dS: (17.86)

Therefore, the Lagrangian L is given by

L D 1

2

Z
S



�
C2 C V ˛V˛

	
dS � �

Z
S

dS: (17.87)

The dynamic system [17–19] reads:

Pr
C r˛ .
V
˛/ D 
CB˛

˛ (17.88)



� PrC C 2V ˛r˛C C B˛ˇV

˛V ˇ
�

D �B˛
˛ (17.89)

PrV ˛ C V ˇrˇV
˛ � Cr˛C � CV ˇB˛

ˇ D 0 (17.90)

The first equation (17.88) represents conservation of mass. Equations (17.89) and
(17.90) are the momentum equations for the normal and tangential components. The
normal velocity C vanishes at the boundary �

C D 0 (17.91)

while the in-surface components V ˛ are tangential to the boundary

n˛V
˛ D 0: (17.92)

As an illustration, we demonstrate two key properties of these equations:
conservation of mass and conservation of energy. The total mass M of the fluid
film is given by the integral

M D
Z
S


dS: (17.93)

Thus, according to the surface law (15.56), M changes at the rate

dM

dt
D
Z
S

Pr
dS �
Z
S


CB˛
˛ dS: (17.94)
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An application of equation (17.88) yields

dM

dt
D �

Z
S

r˛ .
V
˛/ dS: (17.95)

Therefore, by the Gauss theorem,

dM

dt
D
Z
S

n˛
V
˛dS (17.96)

This integral vanishes according to the boundary condition (17.92) and conservation
of mass is therefore proven.

To prove conservation of energy, apply the surface law (15.56) to the total energy

E D 1

2

Z
S



�
C2 C V˛V

˛
	
dS C �

Z
S

dS: (17.97)

The result is

E D
Z
S

 
1
2

Pr
 �C2 C V ˛V˛
	C 


�
C PrC C V˛ PrV ˛

�
� 1
2

CB

ˇ

ˇ

�
C2 C V ˛V˛

	 � �CB˛
˛

!
dS: (17.98)

Use equations (17.88)–(17.90) to eliminate Pr
, PrC and PrV ˛ in this equation.
Upon the cancellation of several terms we arrive at the following equation

dE

dt
D
Z
S

�
�1
2

rˇ

�

V ˇ

	 �
C2 C V ˛V˛

	 � 
CV ˛r˛C � 
V˛V ˇrˇV
˛

�
dS:

(17.99)

An application of Gauss’s theorem cancels the rest of the terms and the resulting
boundary term vanishes due to the boundary condition (17.92). This completes the
proof on the conservation of energy.

Exercise 354. Combine equations (17.89)–(17.90) into a single second-order
vector equation.

17.7 Summary

In this final chapter of the book, you experienced the versatility of the calculus
of moving surfaces. Interestingly, we presented the calculus of moving surfaces
in a relatively narrow setting: embedded surfaces in a Euclidean space. There
exists an extension of the calculus of moving surfaces to surfaces of arbitrary
dimension embedded in deforming Riemannian spaces. Nevertheless, even the
relatively narrow version of the calculus of moving surfaces presented here finds
a broad range of applications.
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