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Calculus of Variations

1 Functional Derivatives

The fundamental equation of the calculus of variations is the Euler-Lagrange
equation

d

dt

(
∂f

∂ẋ

)
− ∂f

∂x
= 0.

There are several ways to derive this result, and we will cover three of the
most common approaches. Our first method I think gives the most intuitive
treatment, and this will then serve as the model for the other methods that
follow.

To begin with, recall that a (real-valued) function on R
n is a mapping

f : U ⊂ R
n → R. In other words, f takes a point in some subset U of R

n

and gives back a number, i.e., a point in R. In particular, the domain of f is a
subset of R

n. We write this mapping as f(x).
In contrast to this, a functional F is a “function” whose domain is the

space of curves in R
n, and hence it depends on the entire curve, not just a

single point. Very loosely speaking, we will take a curve to be a differentiable
mapping y : U ⊂ R

n → R
m. So a curve is just a function defined on some

interval, and a functional is a “function of a function.”
For example, let y(x) be a real valued curve defined on the interval [x1, x2] ⊂

R. Then we can define a functional F [y] by

F [y] :=

∫ x2

x1

[y(x)]2 dx ∈ R.

(The notation F [y] is the standard way to denote a functional.) So a functional
is a mapping from the space of curves into the real numbers.

We now want to define the derivative of such a functional. There are several
ways to go about this, and we will take the most intuitive approach that is by
analogy with the usual notion of derivative.

So, let f(t) be a function of a single real variable, and recall the definition
of the derivative f ′(t):

f ′(t) =
df

dt
(t) = lim

h→0

f(t+ h) − f(t)

h
. (1)

This is equivalent to saying that f is differentiable at t if there exists some
number L (called the derivative of f at t) and a function ϕ with the property
that

lim
h→0

ϕ(h)

h
= 0

such that
f(t+ h) = f(t) + Lh+ ϕ(h). (2)
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Before proving the equivalence of these formulations, let me make two re-
marks. First, we say that such a function ϕ(h) is O(h2) (order h2). And
second, note that the number L is just a linear map from R to R. (In this case,
L : R → R is defined by L(h) = Lh for h ∈ R.) In fact, it is this formulation of
the derivative that is used to generalize differentiation to functions from R

n to
R

m, in which case the linear map L becomes the Jacobian matrix (∂yi/∂xj).
Let us now show that equations (1) and (2) are equivalent. Note that if we

start from (1) and define the function ϕ by

ϕ(h) =

{
f(t+ h) − f(t) − f ′(t)h for h 6= 0

0 for h = 0

then
f(t+ h) = f(t) + Lh+ ϕ(h)

where L = f ′(t) and (by equation (1)) limϕ(h)/h = 0. Conversely, if we start
from equation (2), then

f(t+ h) − f(t)

h
= L+

ϕ(h)

h

and taking the limit as h→ 0 we see that f ′(t) = L.
Now let us return to functionals. Let γ be a curve in the plane:

γ = {(t, x) : x(t) = x for t0 < t < t1}.

Let γ̃ be an approximation to γ, i.e.,

γ̃ = {(t, x) : x = x(t) + h(t)}

for some function h(t). We abbreviate this by γ̃ = γ + h. Let F be a functional
and consider the difference F [γ̃] − F [γ] = F [γ + h] − F [γ].

t0 t1

x

t

γ

eγ

We say that F is differentiable if there exists a linear map L (i.e., for fixed γ
we have L(h1+h2) = L(h1)+L(h2) and L(ch) = cL(h)) and a remainder R(h, γ)
with the property that R(h, γ) = O(h2) (i.e., for |h| < ε and |h′| = |dh/dt| < ε
we have |R| < const · ε2) such that

F [γ + h] − F [γ] = L(h) +R(h, γ) (3)
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The linear part of equation (3), L(h), is called the differential of F .
We now want to prove the following theorem. As is common, we will denote

the derivative with respect to t by a dot, although in this case t is not necessarily
the time – it is simply the independent variable.

Theorem 1. Let γ be a curve in the plane, and let f = f(x(t), ẋ(t), t) be a

differentiable function. Then the functional

F [γ] =

∫ t1

t0

f(x(t), ẋ(t), t) dt

is differentiable and its derivative is given by

L(h) =

∫ t1

t0

[
∂f

∂x
− d

dx

(
∂f

∂ẋ

)]
h dt+

∂f

∂ẋ
h

∣∣∣∣
t1

t0

(4)

Proof. Since f is a differentiable function we have (using equation (2) in the
case where f is a function of the two variables x and ẋ)

F [γ + h] − F [γ] =

∫ t1

t0

[f(x+ h, ẋ+ ḣ, t) − f(x, ẋ, t)] dt

=

∫ t1

t0

(
∂f

∂x
h+

∂f

∂ẋ
ḣ

)
dt+ O(h2)

:= L(h) +R(h, γ)

where we have defined L(h) =
∫ t1

t0
[(∂f/∂x)h + (∂f/∂ẋ)ḣ] dt and R(h, γ) =

O(h2). By equation (3) this shows that F is differentiable.
Integrating the second term of L(h) by parts we have

∫ t1

t0

∂f

∂ẋ

dh

dt
dt =

∂f

∂ẋ
h

∣∣∣∣
t1

t0

−
∫ t1

t0

d

dt

(
∂f

∂ẋ

)
h dt

and therefore

L(h) =

∫ t1

t0

[
∂f

∂x
− d

dt

(
∂f

∂ẋ

)]
h dt+

∂f

∂ẋ
h

∣∣∣∣
t1

t0

. �

2 The Euler-Lagrange Equation

Before proving our main result (the Euler-Lagrange equation) we need a lemma.
Note that the function h(t) in this lemma must be completely arbitrary (other
than being continuous).
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Lemma. If a continuous function f(t) defined on the interval [t0, t1] satisfies∫ t1
t0
f(t)h(t) dt = 0 for any continuous function h(t) with h(t0) = h(t1) = 0,

then f(t) = 0 for all t ∈ [t0, t1].

Proof. First note that this makes sense intuitively because if you choose h(t) 6= 0
only over a very small interval, then the integral essentially picks out f(t) only
over this interval, and therefore f(t) must equal 0 on this very small interval.
However, since the interval is arbitrary, it must be that f = 0 everywhere.

(A formal way to show this is to let h(t) be the Dirac delta function δ(t− t∗)
so that f(t∗) = 0 for all t∗ ∈ (t0, t1). But we aren’t going to assume any
knowledge of the Dirac delta at this point.)

Now for the proof. Assume that f is not identically 0, and there is no loss
of generality in assuming that there exists t∗ ∈ (t0, t1) such that f(t∗) > 0. We
first show that if a continuous function is nonzero at a point, then it is nonzero
in a neighborhood of that point. Recall that to say f is continuous at t∗ means
that given ε > 0, there exists δ > 0 such that for all t with |t∗ − t| < δ we have
|f(t∗) − f(t)| < ε. So if 0 < f(t∗), then choosing 0 < ε < f(t∗) shows that you
can’t have f(t) = 0 if |t∗ − t| < δ. Therefore, since f is continuous, there exists
a neighborhood ∆ of t∗ such that f(t) > c = constant > 0 for all t ∈ ∆.

Write ∆ = (t∗ − d, t∗ + d) ⊂ (t0, t1) and let ∆/2 denote the interval ∆/2 =
(t∗−d/2, t∗+d/2). Choose the function h(t) so that h(t) = 0 outside ∆, h(t) > 0
on ∆, and h(t) = 1 on ∆/2.

t0 t∗ − d t∗ − d/2 t∗ t∗ + d/2 t∗ + d t1

h(t)

h = 1

Since h = 0 outside ∆ we have
∫ t1

t0
fh dt =

∫
∆
fh dt. And since f > c > 0 for

all t ∈ ∆ it follows that

∫ t1

t0

f(t)h(t) dt =

∫

∆

f(t)h(t) dt ≥ c · 1 · d
2
· 2 = cd > 0.

But this contradicts the hypothesis that
∫ t1

t0
fh dt = 0 and hence it must be that

f(t∗) = 0 for all t∗ ∈ (t0, t1), i.e., f(t) = 0 for all t ∈ [t0, t1]. �

Let me make one remark. The function h(t) defined in the proof of the
preceding theorem is sometimes called a “bump function,” and such functions
are used, for example, in more general integration theory to prove the existence
of partitions of unity. As a specific example, let us show that there exists a C∞
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function h(t) that equals 1 on [−1, 1] and 0 on the complement of (−2, 2). (A
C∞ function is one that is infinitely differentiable.) To see this, first let

f(t) =

{
e−1/t for t > 0

0 for t ≤ 0
.

Now let

g(t) =
f(t)

f(t) + f(1 − t)

and note that g(t) = 1 for t ≥ 1. Finally, define h(t) = g(t+ 2)g(2 − t). I leave
it to you to show that this has the desired properties.

We are now in a position to prove our main result. First some terminology.
We say that an extremal of a differentiable functional F [γ] is a curve γ such
that L(h) = 0 for all h. (This is like saying x0 is a stationary point of a function
f(x) if f ′(x0) = 0.) However, note that if a curve γ is an extremal of F ,
we don’t know whether or not F takes its maximum or minimum (or neither)
value on γ. This is analogous to the usual case in calculus where we have to
evaluate the second derivative of a function g to decide whether a point x0 where
g′(x0) = 0 is a minimum, maximum or inflection point. Fortunately, in most
cases of physical interest we are looking for a minimum, and it will usually be
clear from the problem that we have found the desired result.

Theorem 2 (Euler-Lagrange Equation). A curve γ : x = x(t) is an extremal

of the functional

F [γ] =

∫ t1

t0

f(x(t), ẋ(t), t) dt

on the space of curves passing through the points x0 = x(t0), x1 = x(t1) if and

only if
d

dt

(
∂f

∂ẋ

)
− ∂f

∂x
= 0 (5)

along the curve x(t).

Proof. When we refer to the space of curves passing through the points x0 and
x1 we mean that h(t0) = h(t1) = 0 for all (differentiable) functions h(t). By
Theorem 1 we have

L(h) =

∫ t1

t0

[
∂f

∂x
− d

dt

(
∂f

∂ẋ

)]
h dt+

∂f

∂ẋ
h

∣∣∣∣
t1

t0

.

The second term on the right hand side is the boundary term, and it vanishes
by hypothesis. We also have L(h) = 0 for all h since γ is an extremal. But then

L(h) =

∫ t1

t0

[
∂f

∂x
− d

dt

(
∂f

∂ẋ

)]
h dt = 0
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for all h so that by the lemma we have the Euler-Lagrange equation

∂f

∂x
− d

dt

(
∂f

∂ẋ

)
= 0.

This is clearly equivalent to

d

dt

(
∂f

∂ẋ

)
− ∂f

∂x
= 0.

Conversely, if the Euler-Lagrange equation holds, then clearly L(h) = 0 so
that γ is an extremal. �

It is worth emphasizing that this is a differential equation for x(t) (as opposed
to f) since the function f is known. In fact, in a later section we will see that this
Euler-Lagrange equation is a second-order differential equation for x(t) (which
can be reduced to a first-order equation in the special case that ∂f/∂t = 0, i.e.,
that f has no explicit dependence on the independent variable t).

So far we have considered only functions of the form f = f(x(t), ẋ(t), t). We
can easily generalize this to functions of several dependent variables {x1, . . . , xn}:

f = f(x1(t), ẋ1(t), x2(t), ẋ2(t), . . . , xn(t), ẋn(t)).

Now we have n curves γi : xi = xi(t) and γ̃i = xi + hi so that

F [γ1 + h1, . . . , γn + hn] − F [γ1, . . . , γn]

=

∫ t1

t0

[f(x1 + h1, . . . , xn + hn) − f(x1, . . . , xn)] dt

=

∫ t1

t0

n∑

i=1

(
∂f

∂xi
hi +

∂f

∂ẋi
ḣi

)
dt+

n∑

i=1

O
(
(hi)2

)

Again, assume that the boundary terms vanish when we integrate by parts, and
we are left with

L(h1, . . . , hn) =

∫ t1

t0

n∑

i=1

[
∂f

∂xi
− d

dt

(
∂f

∂ẋi

)]
hi dt.

If we now assume that the variations hi are all independent (so this ignores
constraints), then we conclude that we will have an extremal if

∂f

∂xi
− d

dt

(
∂f

∂ẋi

)
= 0 for each i = 1, . . . , n. (6)

In other words, the Euler-Lagrange equation applies to each variable (or coor-
dinate) separately.
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Example 1. Our first example will be to show that the shortest distance be-
tween two points in the plane is a straight line. Thus we want to minimize the
arc length

∫ (x2,y2)

(x1,y1)

ds =

∫ (x2,y2)

(x1,y1)

√
dx2 + dy2 =

∫ (x2,y2)

(x1,y1)

√
1 + y′2 dx

where ds is an infinitesimal element of arc length in the plane.
The independent variable is x, the dependent variable is y, and we have

f(y, y′, x) =
√

1 + y′2. Then ∂f/∂y = 0 so that

d

dx

(
∂f

∂y′

)
= 0

which implies
∂f

∂y′
=

y′√
1 + y′2

= const := c.

Squaring this expression yields y′2(1 − c2) = c2 > 0 so we must have c2 < 1.
Then

y′ =
c√

1 − c2
:= m

so integrating this show that y = mx+ b where b is the constant of integration.
We will shortly generalize this result to curves in arbitrary metric spaces.

Example 2. Our next example is a famous problem called the brachis-

tochrone, and it is the following. Consider a particle moving in a constant
gravitational field, starting from rest at the point (x1, y1) and falling to a lower
point (x2, y2). We want to find the path the particle should take to minimize
the time of travel (in the absence of friction).

For convenience, we choose the coordinates as shown below, with the origin
as the initial location of the particle.

x

y

(x1, y1)

(x2, y2)

y(x)

From F = mg = −∇V we have V (y) = −mgy, so by conservation of energy
it follows that 0 = (1/2)mv2 − mgy or v =

√
2gy. Denoting an infinitesimal
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distance in the plane by ds, the time of travel is given by

τ =

∫ (x2,y2)

(x1,y1)

ds

v
=

∫ (x2,y2)

(x1,y1)

√
dx2 + dy2

v
=

∫ (x2,y2)

(x1,y1)

√
x′2 + 1√

2gy
dy

=
1√
2g

∫ (x2,y2)

(x1,y1)

√
x′2 + 1

y
dy

where we are considering x = x(y) to be a function of y so that x′ = dx/dy.

The Euler-Lagrange equation (5) is to be applied to the integrand

f(x, x′, y) =

√
x′2 + 1

y

where now y is the independent variable. Because ∂f/∂x = 0, we see that
(d/dy)(∂f/∂x′) = 0 or

∂f

∂x′
=

1√
y

x′√
x′2 + 1

= const :=

√
1

2a

and therefore

x′2

y(x′2 + 1)
=

1

2a
.

Solving this for x′ and integrating we find

x =

∫ √
y

2a− y
dy =

∫
y√

2ay − y2
dy.

Making the substitution y = a(1 − cos θ) so that dy = a sin θ dθ, this becomes

x =

∫
a(1 − cos θ) dθ = a(θ − sin θ) + const

Our initial condition is x = y = 0 which is equivalent to θ = 0, and this
shows that the constant of integration is also zero. Therefore the solution to
our problem is

x = a(θ − sin θ) and y = a(1 − cos θ)

where the constant a is chosen so that the path passes through the point (x2, y2).

These equations are the parametric equations of a curve called a cycloid.
This is the curve traced out by a point on the rim of a wheel of radius a that is
rolling along the underside of the x-axis. See the figure below.
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x

y

a

P

θ

x = aθ

x = aθ − a sin θ

a cos(π − θ) = −a cos θ

y = a − a cos θ

An interesting physical aspect of the cycloid is this: a particle released from
rest at any point P will take an amount of time to reach the bottom point of
the curve (i.e., y = 2a) that is independent of P . I leave the proof of this fact
to you.

Example 3. One of the fundamental principles of classical mechanics is called
Hamilton’s Principle: If

L(x, ẋ, t) = T (x, ẋ) − V (x, t)

is the Lagrangian of the system, then the system moves from time t1 to t2 in
such a way that the integral

I =

∫ t2

t1

L(x, ẋ, t) dt

is an extremum with respect to the functions x(t) where the endpoints x(t1)
and x(t2) are fixed.

As an easy example, consider the simple plane pendulum:

x

y

l

m
θ

The kinetic energy is

T =
1

2
mv2 =

1

2
ml2θ̇2

and the potential energy is given by

V = mgl(1 − cos θ)
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where we have defined V to be zero when the mass is at its lowest point. Then
the Lagrangian is

L = T − V =
1

2
ml2θ̇2 −mgl(1 − cos θ)

where the independent variable is t and the dependent variable is θ.
To find the Euler-Lagrange equation we compute

∂L

∂θ
= −mgl sin θ and

∂L

∂θ̇
= ml2θ̇

so we find from equation (5)

ml2θ̈ +mgl sin θ = 0

or
θ̈ + ω2 sin θ = 0

where ω2 := g/l. In the case that we consider only small oscillations θ ≪ 1 we
have sin θ ≈ θ so our equation becomes θ̈ + ω2θ = 0 with the general solution

θ(t) = A cos(ωt+ δ).

3 The Geodesic Equation

We now turn to the more general problem mentioned above of finding the
equation of the shortest path between two points in what is called a semi-

Riemannian space. This is a generalization of the usual metric space R
3 with

the Pythagorean notion of distance, and will be more carefully defined below.
To motivate this definition, we first look at some common special cases that are
easy to visualize.

The first thing to formulate is how to find an infinitesimal displacement dx in
a curvilinear coordinate system. Let us consider the usual spherical coordinates
as an example.

x

y

z

θ

φ

x
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Writing ‖x‖ = r, the position vector x has (x, y, z) coordinates

x = (r sin θ cosφ, r sin θ sinφ, r cos θ).

If we let ui stand for the ith coordinate of a general curvilinear coordinate
system, then a unit vector in the ui direction is by definition

ûi =
∂x/∂ui

‖∂x/∂ui‖ .

For our spherical coordinates we have for r:

∂x

∂r
= (sin θ cosφ, sin θ sinφ, cos θ)

and ∥∥∥∥
∂x

∂r

∥∥∥∥ =

〈
∂x

∂r
,
∂x

∂r

〉1/2

= 1

so that

r̂ = (sin θ cosφ, sin θ sinφ, cos θ) and
∂x

∂r
= r̂.

For θ:
∂x

∂θ
= (r cos θ cosφ, r cos θ sinφ,−r sin θ)

and ∥∥∥∥
∂x

∂θ

∥∥∥∥ =

〈
∂x

∂θ
,
∂x

∂θ

〉1/2

= r

so that

θ̂ = (cos θ cosφ, cos θ sinφ,− sin θ) and
∂x

∂θ
= r θ̂.

For φ:
∂x

∂φ
= (−r sin θ sinφ, r sin θ cosφ, 0)

and ∥∥∥∥
∂x

∂φ

∥∥∥∥ =

〈
∂x

∂φ
,
∂x

∂φ

〉1/2

= r sin θ

so that

φ̂ = (− sinφ, cosφ, 0) and
∂x

∂φ
= r sin θ φ̂.

Putting this all together we see that

dx =
∂x

∂r
dr +

∂x

∂θ
dθ +

∂x

∂φ
dφ

or
dx = r̂ dr + θ̂ r dθ + φ̂ r sin θ dφ.
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While this was the “right” way to derive this result, there is a quick way that
is usually easiest. In this method, we hold two of the three variables constant
and vary the third, and see what dx is for that variation. So, first hold θ, φ
constant and vary r to obtain dx = dr r̂ (look at the figure above, and let r̂, θ̂, φ̂
be unit vectors in the appropriate directions). Next, hold r, φ constant and

vary θ to see that dx = r dθ θ̂. Finally, hold r, θ constant and vary φ to obtain
dx = r sin θ dφ φ̂. Putting these together we again find

dx = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂.

Note also that if we treat each of these three variations as the edge of a small
cube, then the volume element for spherical coordinates is seen to be the product
of these displacements and we have the well know result d3x = r2 sin θdrdθdφ.

Returning to the unit vectors r̂, θ̂ and φ̂ derived above, it is also not hard
to see that these form an orthonormal set. Indeed, they are normalized by
construction, and by direct calculation it is easy to see that they are orthogonal
(e.g., r̂ · θ̂ = 0). Alternatively, we can note that r̂ points in a radial direction,

while θ̂ and φ̂ are both tangent to a sphere as well as orthogonal to each other.
In a similar (but much easier) manner, it is easy to see that in the plane R

2

we have the cartesian coordinate expression

dx = dx x̂ + dy ŷ

as well as the polar coordinate expression

dx = dr r̂ + r dθ θ̂

By definition, the element of distance ds (or line element) is given by

ds2 = 〈dx, dx〉

so for the three examples given above we have (since all basis vectors are or-
thonormal):

ds2 = dx2 + dy2 for cartesian coordinates in R
2

ds2 = dr2 + r2dθ2 for polar coordinates in R
2

ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2 for spherical polar coordinates.

If we label our coordinates by xi and the (not generally orthonormal) basis

vectors by ei (e.g., (x1, x2, x3) = (r, θ, φ) and e1 = r̂, e2 = rθ̂, e3 = r sin θφ̂),
then using the summation convention we can write all of these line elements as

ds2 = 〈dx, dx〉 = 〈eidx
i, ejdx

j〉 = 〈ei, ej〉dxidxj

or simply
ds2 = gijdx

idxj (7)
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where the symmetric matrix (gij) with components defined by

gij := 〈ei, ej〉 = gji

is called the metric.
The metric is both symmetric and diagonal (since we almost always use an

orthonormal basis), and in our three examples it takes the forms

(gij) =

[
1

1

]
for ds2 = dx2 + dy2

(gij) =

[
1

r2

]
for ds2 = dr2 + r2dθ2

(gij) =




1

r2

r2 sin2 θ



 for ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2

Since the metric is diagonal, it is obvious that the inverse metric is given by
(gij) := (gij)

−1 where gii = 1/gii. In other words,

gijgjk = δi
k. (8)

In particular we have

(gij) =

[
1

1

]
for ds2 = dx2 + dy2

(gij) =

[
1

1/r2

]
for ds2 = dr2 + r2dθ2

(gij) =




1
1/r2

1/r2 sin2 θ


 for ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2

A Riemannian space is a metric space with a positive definite metric
(gij) defined on it. (Equivalently, the inner product is positive definite, i.e.,
〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0.) In other words, gij = 0 for i 6= j
and gii > 0. In a semi-Riemannian space, we remove the requirement that
the diagonal entries gii be greater than zero. (An equivalent way to say this is
that the inner product is nondegenerate, i.e., 〈u, v〉 = 0 for all v if and only
if u = 0.) For example, the usual Lorentz metric ηij of special relativity takes
the form ds2 = dt2 − dx2. This is not positive definite because any nonzero
light-like (or null) vector has zero length.

We are now ready to generalize Example 1. We want to find the equation
for the path of shortest length between two points in a Riemannian or semi-
Riemannian space. In other words, we want to minimize the path length

∫
ds =

∫
(gijdx

idxj)1/2 =

∫ (
gij
dxi

dt

dxj

dt

)1/2

dt

13



where xi = xi(t) and t is an arbitrary curve parameter. Note also that in general
gij = gij(x).

However, the presence of the square root in the integrand makes things way
too messy. It is far easier to realize that whatever path extremizes

∫
ds =∫

(ds/dt)dt will also extremize
∫
(ds/dt)2dt. Thus, let us use equation (6) to

find the path that extremizes the integral

∫
ds =

∫
gij ẋ

iẋj dt.

In general, the path of shortest length between two points is called a geodesic,
and the resulting equation for x(t) is called the geodesic equation.

Letting f = gij ẋ
iẋj we have

∂f

∂xk
=
∂gij

∂xk
ẋiẋj := gij,kẋ

iẋj

∂f

∂ẋk
= gij

∂ẋi

∂ẋk
ẋj + gij ẋ

i ∂ẋ
j

∂ẋk
= gij(δ

i
kẋ

j + ẋiδj
k)

= gkj ẋ
j + gikẋ

i = 2gkj ẋ
j

d

dt

(
∂f

∂ẋk

)
= 2

(
dgkj

dt
ẋj + gkj ẍ

j

)
= 2(gkj,lẋ

j ẋl + gkj ẍ
j)

and hence the Euler-Lagrange equation (6) becomes

gkj ẍ
j + gkj,lẋ

j ẋl − 1

2
gij,kẋ

iẋj = 0.

We rewrite the second term as follows:

gkj,lẋ
j ẋl =

1

2
(gkj,lẋ

j ẋl + gkj,lẋ
j ẋl)

=
1

2
(gkj,lẋ

j ẋl + gkl,j ẋ
lẋj) (by relabeling the second term)

=
1

2
(gkj,l + gkl,j)ẋ

lẋj (since ẋj ẋl = ẋlẋj)

=
1

2
(gkj,i + gki,j)ẋ

iẋj (by relabeling l → i)

This leaves us with

gkj ẍ
j +

1

2
(gkj,i + gki,j − gij,k)ẋiẋj = 0

and using equation (8) we have

ẍl +
1

2
glk(gkj,i + gki,j − gij,k)ẋiẋj = 0.

14



Let us define the Christoffel symbols

Γl
ij :=

1

2
glk(gkj,i + gki,j − gij,k) = Γl

ji.

Without the comma notation, this looks like

Γl
ij =

1

2
glk

(
∂gkj

∂xi
+
∂gki

∂xj
− ∂gij

∂xk

)
. (9)

We will also find it useful to define the Christoffel symbol with all lowered
indices:

Γkij := gklΓ
l
ij =

1

2
(gki,j + gkj,i − gij,k) = Γkji. (10)

and hence also
Γl

ij = glkΓkij . (11)

In any case, the equation of a geodesic becomes

ẍl + Γl
ij ẋ

iẋj = 0

or
d2xl

dt2
+ Γl

ij

dxi

dt

dxj

dt
= 0. (12)

It is left as a homework problem to look at equation (12) under a change of
parameter. Solutions of equation (12) yield t as arclength or any other affinely
related parameter λ (i.e., λ = at+ b).

Example 4. The simplest nontrivial example is just plane polar coordinates
ds2 = dr2 + r2dθ2. For clarity, we will sometimes write the indices i = 1, 2 as
just r, θ. We will also use a hybrid notation that should be obvious from the
context.

As we have seen above, the nonzero components of the metric are grr = 1
and gθθ = r2 along with grr = 1 and gθθ = 1/r2. The only nontrivial derivative
of the metric components is

gθθ,r =
∂

∂r
gθθ = 2r

so the only non-vanishing Christoffel symbols are those with exactly two θ’s and
one r:

Γrθθ =
1

2
(grθ,θ + grθ,θ − gθθ,r) = −r

Γθrθ = Γθθr =
1

2
(gθθ,r + gθr,θ − grθ,θ) = r.

15



Since (gij) is diagonal, these yield

Γr
θθ = griΓiθθ = grrΓrθθ = −r

Γθ
rθ = Γθ

θr = gθiΓirθ = gθθΓθrθ =
1

r

and the geodesic equations become

r̈ − rθ̇2 = 0 and θ̈ +
2

r
ṙθ̇ = 0.

This pair of coupled equations is not easy to solve. But by inspection we
see that one class of solution is simply θ̇ = r̈ = 0. Then θ = const and r is of
the form of a straight line r = at+ b. In other words, as we already knew, the
geodesics in the plane are just the straight lines. (Actually, in this particular
class of solutions we have θ = const, so these are only those lines that pass
through the origin.)

4 Variational Notation and the Second Form of

Euler’s Equation

So far we have been fairly careful with our notation in explaining just what it
means to vary a path. Now we are going to write our equations in another form
that is commonly used, especially by physicists. I stress that there is nothing
new here, it is only a change of notation that is justified by what we have done
up to this point.

Recall that we had the varied curve γ̃ = γ + h or, equivalently, x̃(t) =
x(t) + h(t). Define the variation of x by

δx(t) := x̃(t) − x(t) = h(t).

Taking the derivative of this yields

d

dt
δx(t) = ˙̃x(t) − ẋ(t) = ḣ(t).

But δẋ(t) := ˙̃x(t) − ẋ(t) and hence we see that

δẋ(t) =
d

dt
δx(t) = ḣ(t).

We also write
δf := f(x+ h, ẋ+ ḣ, t) − f(x, ẋ, t)

so expanding this to first order (i.e., ignore O(h2) terms) we have

δf =
∂f

∂x
h+

∂f

∂ẋ
ḣ =

∂f

∂x
δx+

∂f

∂ẋ
δẋ.

16



As we did in Theorem 1, let us consider the functional

F [γ] =

∫ t1

t0

f(x(t), ẋ(t), t) dt.

Then

δF := F [γ + h] − F [γ] =

∫
δf

=

∫ t1

t0

(
∂f

∂x
δx+

∂f

∂ẋ
δẋ

)
dt =

∫ t1

t0

(
∂f

∂x
δx+

∂f

∂ẋ

d

dt
δx

)
dt

=

∫ t1

t0

[
∂f

∂x
− d

dt

(
∂f

∂ẋ

)]
δx dt

where to get the last line we integrated by parts and used δx(t0) = δx(t1) = 0.
Again, at an extremum we have δF = 0, and since this holds for arbitrary

variations δx(t) we must have the same result as before (Theorem 2):

∂f

∂x
− d

dt

(
∂f

∂ẋ

)
= 0. (13)

As I have said, there is nothing new here, only the symbolic manipulation

δf =
∂f

∂x
δx+

∂f

∂ẋ
δẋ.

Let’s take a closer look at equation (13). We will show that this is actually
a second-order differential equation for x(t). To see this, first note that for any
function g(x(t), ẋ(t), t) we have the total derivative

dg

dt
=
∂g

∂t
+
∂g

∂x

dx

dt
+
∂g

∂ẋ

dẋ

dt
=
∂g

∂t
+
∂g

∂x
ẋ+

∂g

∂ẋ
ẍ.

Since equation (13) contains the total derivative of ∂f/∂ẋ, we can apply the
above equation with g = ∂f/∂ẋ to write (13) as

∂f

∂x
− ∂2f

∂t∂ẋ
− ∂2f

∂x∂ẋ
ẋ− ∂2f

∂ẋ2
ẍ = 0.

This clearly shows that equation (13) is in fact a second-order differential
equation for x(t). Fortunately, in many cases of physical interest the function
f will have no explicit dependence on the independent variable t, and we can
then derive a simpler first-order equation. This is a simple consequence of the
Euler-Lagrange equation. We have

df

dt
=
∂f

∂t
+
∂f

∂x
ẋ+

∂f

∂ẋ

dẋ

dt

=
∂f

∂t
+
∂f

∂x
ẋ+

d

dt

(
∂f

∂ẋ
ẋ

)
− d

dt

(
∂f

∂ẋ

)
ẋ

17



=
∂f

∂t
+
∂f

∂x
ẋ+

d

dt

(
∂f

∂ẋ
ẋ

)
− ∂f

∂x
ẋ (by equation (13))

=
∂f

∂t
+
d

dt

(
∂f

∂ẋ
ẋ

)

or
∂f

∂t
+
d

dt

(
∂f

∂ẋ
ẋ− f

)
= 0.

But then if ∂f/∂t = 0 we are left with(d/dt)[(∂f/∂ẋ)ẋ − f ] = 0 or

∂f

∂ẋ
ẋ− f = const (14)

which is a first-order equation, called the second form of Euler’s equation.
(Some readers might recognize that if f is the Lagrangian L, then this is just

the statement that the Hamiltonian H =
∑
pq̇−L is conserved. Note however,

that this is not the statement that H is the total energy of the system; that
fact depends on whether or not the kinetic energy is a homogeneous quadratic
function of the q̇’s.)

Example 5. Consider the surface of revolution problem. Here we have a curve
y(x) with endpoints (xa, ya) and (xb, yb) that is rotated about the x-axis. We
want the curve that will minimize the area.

x

y

z

(xa, ya)
(xb, yb)

We assume that ya, yb > 0 and y(x) ≥ 0 for xa ≤ x ≤ xb, and try to minimize
the surface area given by

2π

∫
y ds = 2π

∫ xb

xa

y
√

1 + y′2 dx

where y′ = dy/dx. Here the independent variable is x, and our function is

f = f(y, y′, x) = y
√

1 + y′2 (the factor of 2π cancels out of equation (14)).
Since ∂f/∂x = 0, we apply the second form of Euler’s equation and write

∂f

∂y′
y′ − f = −α

where we define the constant as −α for convenience (and hindsight). This gives

yy′2√
1 + y′2

− y
√

1 + y′2 =
yy′2 − y(1 + y′2)√

1 + y′2
=

−y√
1 + y′2

= −α

18



so that (y/α)2 = 1 + y′2 or y′ = (y2/α2 − 1)1/2 which has the solution

x− x0 =

∫
dy

(y2/α2 − 1)1/2
= α cosh−1 y

α
.

Sketch of how to do the integral: If w = cosh−1 u then u = coshw =
(ew + e−w)/2 so that ew − 2u+ e−w = 0 or e2w − 2uew + 1 = 0. Solving for ew

with the quadratic formula yields

ew =
2u±

√
4u2 − 4

2
= u+

√
u2 − 1

where only the positive root is taken because ew > 0 and u = coshw ≥ 1.
Taking the logarithm of both sides we have w = ln(u+

√
u2 − 1) = cosh−1 u

so that
d cosh−1 u

dx
=

(
1

u+
√
u2 − 1

)(
u′ +

uu′√
u2 − 1

)

or
d cosh−1 u

dx
=

u′√
u2 − 1

and this implies that

d cosh−1 u =
du√
u2 − 1

.

In any case, the solution to our problem is

y = α cosh

(
x− x0

α

)

which is called a catenary. Note that y(x) > 0 implies α > 0. We want to
choose the constants α and x0 such that the curve passes through the points
(xa, ya) and (xb, yb), but this can’t always be done. Without going into the
details, this is because our theory only determines twice-differentiable solutions.
The general solution to this problem is called the Goldschmidt discontinuous

solution.

5 An Alternative Approach to the Functional

Derivative

While we have defined the functional derivative by analogy with the ordinary
derivative, there are other definitions that are also frequently used. For example,
in the path integral approach to quantum field theory the following approach is
quite useful.

Let F be a function of N variables y0, y1, . . . , yN−1. If we start at a point
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y0 = (y0
0 , . . . , y

0
N−1) and move to another nearby point with coordinates yn =

y0
n + dyn, then from calculus we know that

dF =
N−1∑

n=0

∂F

∂yn

∣∣∣∣
y0

dyn.

Suppose we have a function y(x) with x defined on some interval [a, b]. We
break this into N − 1 subintervals with a spacing ε between points. Then
(N − 1)ε = b− a and the nth point is at x = xn = a+nε. The function y takes
the values yn = y(xn) = y(a+nε) which clearly approaches y(x) as N → ∞ and
ε → 0. In this limit, our function F [{yn}] becomes a function of the function
y(x), and we write this functional as F [y].

Now, what does the above expression for dF look like as N → ∞? Recall
the definition of integral:

∫ b

a

dx f(x) = lim
ε→0

N−1∑

n=0

εf(xn).

Write dF as

dF =

N−1∑

n=0

ε

(
1

ε

∂F

∂yn

∣∣∣∣
y0

)
dyn.

Now take the limit ε→ 0 with x = a+nε. Introducing the notation dyn = δy(x)
we define the functional derivative δF/δy(x) by

δF [y] =

∫ b

a

dx
δF [y]

δy(x)

∣∣∣∣
y0(x)

δy(x) (15)

where y0(x) is the particular function y(x) that is the starting point for the
arbitrary infinitesimal variation δy(x), and the factor 1/ε was absorbed into the
term δF/δy(x). Since now F is a functional and not a function, we also write
δF instead of dF to denote the infinitesimal change in F .

Example 6. Let

F [y] =

∫ 1

0

[y(x)]2 dx.

Then to first order in δy we have

F [y + δy] =

∫ 1

0

[y(x) + δy(x)]2 dx =

∫ 1

0

[y(x)2 + 2y(x)δy(x)] dx

so that

δF [y] = F [y + δy] − F [y] =

∫ 1

0

2y(x)δy(x) dx.
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Comparison with (15) shows that

δF [y]

δy(x)
= 2y(x).

Generalizing this result to F [y] =
∫ 1

0
[y(x)]n dx is easy using the binomial

theorem

(a+ b)n =

n∑

k=1

(
n

k

)
an−k bk

where the binomial coefficient is defined by

(
n

k

)
=

n!

k!(n− k)!
.

Then expanding to first order we have

F [y + δy] =

∫ 1

0

(y + δy)n dx =

∫ 1

0

{yn + nyn−1δy} dx

so that

F [y + δy] − F [y] =

∫ 1

0

nyn−1δy dx

and hence, as we would expect, comparison with equation (15) shows that

δF

δy(x)
= n[y(x)]n−1.

In fact, we can now use this result to find the derivative of more general
functionals. For example, using the Taylor expansions

sin y = y − y3

3!
+
y5

5!
− · · · and cos y = 1 − y2

2!
+
y4

4!
+ · · ·

it is easy to see that letting

F [y] =

∫
sin y(x) dx

we have
δF [y]

δy(x)
= cos y(x).

Example 7. Consider the functional F [g] =
∫
f(x)g(x) dx where f(x) is some
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fixed function. Then

δF [g] = F [g + δg] − F [g] =

∫
f(x)[g(x) + δg(x)] dx −

∫
f(x)g(x) dx

=

∫
f(x)δg(x) dx

so that comparison with equation (15) shows that

δF [g]

δg(x)
= f(x) .

We can also use this approach to derive the Euler-Lagrange equation. Let
us first consider a simpler problem. Start from

F [y] =

∫
L(y(x), x) dx

where L is just some function of y(x) and x. Varying y(x) we have (to first
order)

F [y + δy] =

∫
L(y + δy, x) dx =

∫ [
L(y(x), x) +

∂L(x, y)

∂y
δy

]
dx.

Therefore

δF = F [y + δy] − F [y] =

∫
dx

∂L(x, y)

∂y
δy

and hence by (15) again we have

δF

δy(x)
=
∂L(x, y)

∂y
. (16)

As a simple example, suppose F [y] =
∫
x3e−y(x) dx. Then from (16) we find

δF/δy = −x3e−y(x).
Next, to derive the Euler-Lagrange equation we proceed exactly as we did

earlier. Starting from

F [y] =

∫ b

a

L(y(x), y′(x), x) dx

we have (to first order as usual)

F [y + δy] =

∫ b

a

L(y + δy, y′ + δy′, x) dx

=

∫ b

a

[
L(y, y′, x) +

∂L

∂y
δy +

∂L

∂y′
δy′

]
dx

=

∫ b

a

[
L(y, y′, x) +

∂L

∂y
δy − d

dx

(
∂L

∂y′

)
δy

]
dx+

∂L

∂y′
δy(x)

∣∣∣∣
b

a

.

22



This gives us

δF =

∫ b

a

dx

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
δy(x) +

∂L

∂y′
δy(x)

∣∣∣∣
b

a

.

If we think of (15) as a sum over terms [δL/δy(x)]δy(x) as x goes from a to b,
then for x 6= a, b we have the functional derivative as the coefficient of δy(x):

δL

δy(x)
=
∂L

∂y
− d

dx

(
∂L

∂y′

)
(17)

whereas if x = a or b, then we must include the boundary term

− ∂L

∂y′

∣∣∣∣
a

or
∂L

∂y′

∣∣∣∣
b

because these are the coefficients of δy(a) and δy(b).
To again arrive at the Euler-Lagrange equation, we first define the functional

(called the action)

S[x(t)] =

∫ t1

t0

L(x(t), ẋ(t), t) dt.

Hamilton’s principle then states that the true trajectory of the particle is
one which minimizes the action subject to the constraint that the endpoints are
fixed (i.e., no boundary terms). This just means that

δS

δx(t)
= 0

and therefore equation (17) yields the usual Euler-Lagrange equation

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0.

6 The Dirac Delta Function

Let us consider the simplest possible functional

F [y(x)] = y(x0)

which just evaluates y(x) at the specific point x0, and ask about it’s functional
derivative. Well, since F depends on y at only the single point x0, if we vary y
at some point other than x0 it will obviously have no effect on F , and therefore
we must have

δF

δy(x)
= 0 for x 6= x0.

In order to deduce what the functional derivative of F is at x0, let us assume

there exists some function δ(x− x0) such that

F [y(x)] =

∫
δ(x− x0)y(x) dx. (18)
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Since F is independent of y(x) for x 6= x0, we must have δ(x − x0) = 0 for
x 6= x0. And since the measure dx goes to zero, the value of

∫
δ(x− x0)y(x) dx

will be zero for any finite value of δ(x−x0) at the single point x0. Thus δ(x−x0)
must be infinite at x = x0. Fortunately, the actual value of δ(0) is irrelevant for
practical purposes, because all we really need to know is how to integrate with
δ(x).

Using the definition F [y(x)] = y(x0), we define the “function” δ(x) by

y(x0) =

∫ b

a

δ(x− x0)y(x) dx

where x0 ∈ [a, b]. Note that choosing the particular case y(x) = 1, this equation
shows that ∫ b

a

δ(x− x0) dx = 1.

Thus, even though its width is zero, the area under the δ function is 1. Such
“functions” can be realized as the limit of a sequence of proper functions such
as the gaussians

δ(x) = lim
ε→0

1

ε
√
π
e−x2/ε

or as

δ(x) = lim
ε→0

1

π

ε

x2 + ε2
.

In any case, from equation (18) we see that

δF = F [y + δy] − F [y]

=

∫
δ(x− x0)(y(x) + δy(x)) dx −

∫
δ(x− x0)y(x) dx

=

∫
δ(x− x0)δy(x) dx

and comparing this with equation (15) we conclude that

δF

δy(x)
= δ(x− x0)

or
δy(x0)

δy(x)
= δ(x− x0). (19)

Given that we have the delta function by one approach or another, we can
use it to define the functional derivative in a manner analogous to the ordinary
derivative by

δF [y]

δy(x0)
:= lim

ε→0

1

ε

{
F [y(x) + εδ(x− x0)] − F [y(x)]

}
.
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To see the equivalence of this definition with equation (15), consider a variation
of the “independent variable” y(x) that is localized at x0 and has strength ε:

δy(x) = εδ(x− x0) .

Using this in (15) we have

δF [y] = F [y + εδ(x− x0)] − F [y] =

∫
dx
δF [y]

δy(x)
εδ(x− x0) = ε

δF [y]

δy(x0)

so that dividing by ε we obtain

lim
ε→0

F [y + εδ(x− x0)] − F [y]

ε
=

δF [y]

δy(x0)
.

For instance, using the same functional F [y] =
∫ 1

0
y(x)2 dx as we had in

Example 6, we again find that (by expanding to first order in ε and assuming
that x0 ∈ [0, 1])

δF [y]

δy(x0)
= lim

ε→0

1

ε

{∫ 1

0

[y(x) + εδ(x− x0)]
2 dx−

∫ 1

0

y(x)2 dx

}

= lim
ε→0

1

ε

∫ 1

0

2εδ(x− x0)y(x) dx

= 2y(x0).

If F [y] =
∫
y(x)n dx, then this approach along with the binomial theorem gives

the result
δF [y]

δy(x0)
= n[y(x0)]

n−1.

Note also that if we take F [y] = y(x) then

δy(x)

δy(x0)
= lim

ε→0

1

ε
{y(x) + εδ(x− x0) − y(x)}

= δ(x− x0)

in agreement with equation (19). As another way of seeing this, we can write
F [y] in the explicitly functional form

F [y] =

∫
y(z)δ(z − x) dz = y(x)

and therefore

δF [y]

δy(x0)
= lim

ε→0

1

ε

{ ∫
[y(z) + εδ(z − x0)]δ(z − x) dz −

∫
y(z)δ(z − x) dz

}

= δ(x− x0) .
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7 Constraints and Lagrange Multipliers

Here is the general idea behind Lagrange multipliers. Suppose we have a func-
tion f(x, y) that we want to extremize subject to a constraint equation of the
form g(x, y) = 0. Assume that this constrained (relative) extremum occurs at
the point (x0, y0). Furthermore, let us assume that the constraint equation is
parametrized as x = x(s), y = y(s) where s is arc length and s = 0 at (x0, y0).
Then z = f(x(s), y(s)) has an extremum at (x0, y0) so that dz/ds = 0 at that
point. But this means that at (x0, y0) we have

0 =
dz

ds
=
∂f

∂x

dx

ds
+
∂f

∂y

dy

ds
= ∇f ·T

where T = (x′(s), y′(s)) is the (unit) tangent to the curve g(x(s), y(s)) = 0, and
therefore ∇f is orthogonal to T at (x0, y0) (assuming that ∇f 6= 0).

On the other hand, we know that ∇g is orthogonal to surfaces of constant g.
(This is just the statement that since dg = ∇g · dr in general, it follows that if
dr lies in the direction of constant g, then dg = 0 so that ∇g must be orthogonal
to dr.) Since g(x, y) = 0 is a level curve for g, it must be that ∇g is orthogonal
to T also. But then both ∇f and ∇g are orthogonal to T, and all of them lie
in the same plane so that we must have ∇f = λ∇g for some scalar λ. In other
words, we have ∇(f − λg) = 0.

Now suppose we have a function f(x) defined on R
3, and in addition, suppose

that we wish to extremize this function subject to two constraint equations
g(x) = 0 and h(x) = 0. These constraint equations are surfaces in R

3, and
we also assume that they intersect along some curve with tangent T. (If they
don’t, then it is impossible to satisfy the conditions of the problem.) Again, we
evaluate f along this intersection curve and look for the point where df = 0.
As before, this means we want the point where ∇f · T = 0. Since T is also
tangent to both constraint surfaces, it must be that ∇g · T = ∇h · T = 0, and
therefore ∇f,∇g and ∇h all lie in the same plane orthogonal to T. This means
that two of them can be written as a linear combination of the others so that
we can write ∇f = λ1∇g + λ2∇h or ∇(f − λ1g − λ2h) = 0. Points that satisfy
equations of this type are called critical points.

In the simpler case of a single constraint equation g(x) = 0, we would have
to evaluate f over the surface g = 0 and look for the point x0 where ∇f is
orthogonal to the entire tangent plane (i.e., df = 0 no matter which direction
you move). Since ∇g is also orthogonal to the tangent plane, it again follows
that ∇f and ∇g must be proportional.

Before working an example, let me remark that the question of local versus
absolute extremum depends on the notion of a continuous function on compact
spaces. If the domain of f is compact, then f has an absolute max or min
on that domain. In the case of R

n, compactness is equivalent to being closed
and bounded (this is the famous Heine-Borel theorem). We also ignore the
question of how to prove that a given critical point is a max, min or saddle
point. Fortunately, this is usually clear in most physical problems.
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Example 8. Let f(x, y, z) = xyz and g(x, y, z) = x2 + y2 + z2 − 1 = 0. Then
∇(f + λg) = 0 implies

yz + 2λx = 0

xz + 2λy = 0

xy + 2λz = 0

together with x2 + y2 + z2 = 1. Multiply the first three equations by x, y, z
respectively and add them together using the last (constraint) equation to obtain
3xyz + 2λ = 0 or λ = −(3/2)xyz.

The first equation now yields yz − 3x2yz = 0. If y, z 6= 0 then x = ±1/
√

3.
The second equation is xz−3xy2z = 0 which implies y = ±1/

√
3 (since x and y

are nonzero), and the third equation is xy−3xyz2 = 0 so z = ±1/
√

3. Therefore
the max and min are the eight points (±1/

√
3,±1/

√
3,±1/

√
3).

What if y = 0? The second equation then says that xz = 0 which implies
either x = 0 or z = 0 also. But if x = 0 then the constraint equation says
that z = ±1. If y = 0 and z = 0 then we similarly have x = ±1. If we
had started with the assumption that z = 0 we would have xy = 0, so follow-
ing the same argument we conclude that we also have the additional solutions
(0, 0,±1), (0,±1, 0) and (±1, 0, 0).

Do these additional solutions also correspond to either a max or min? No,
they don’t. To see this, look at the function f = xyz in, for example, a neigh-
borhood of (0, 0, 1). As you move away from this point in the x and y directions,
the function f(x, y, 1) = xy will be > 0 if x, y have the same sign, and it will be
< 0 if they have opposite signs. Thus these additional points are inflection (or
saddle) points.

Now that we have the basic idea behind Lagrange multipliers, we wish to
apply it to minimizing functionals (as opposed to simply functions) subject
to constraints. To keep the notation as simple as possible, and also to agree
with the way many texts treat the subject, we begin by turning to the third
formulation of the calculus of variations. (The first two formulations led to
equations (5) and (13).)

Recall that we had x(t) → x̃(t) = x(t) + η(t) and we varied the curve η(t).
(We labeled the curve η(t) by h(t) before, but I don’t want to confuse this with
the function h defined below.) This led to the functional

F [γ̃] =

∫ t1

t0

f(x̃, ˙̃x, t) dt.

Now, instead of varying η, let us choose an arbitrary but fixed η, and introduce
a variation parameter ε so that

x̃(t, ε) = x(t) + εη(t).
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(Let me remark that the specific form x̃ = x + εη is never needed in what
follows. All that we really need is a one-parameter family of test functions
x̃(t, ε). See the discussion below.) Then the functional becomes an ordinary
integral function of ε which we denote by I(ε):

I(ε) =

∫ t1

t0

f(x̃, ˙̃x, t) dt.

Be sure to realize just what the difference is between the integrands in these
two equations, and why the first is a functional while the second is an ordinary
function.

In the present case, ε = 0 corresponds to the desired extremizing function
x(t). Recall also that in deriving the Euler-Lagrange equation, our curves η(t)
all obeyed the boundary conditions η(t0) = η(t1) = 0, i.e., all of the varied
curves pass through the fixed endpoints x0 = x(t0) and x1 = x(t1). In other
words, we have

x̃(t0, ε) = x0 and x̃(t1, ε) = x1 for all ε

and x̃(t, 0) = x(t) is the desired extremizing function. We shall also assume that
x̃(t, ε) is C2, i.e., that it has continuous first and second derivatives so that

∂2

∂t ∂ε
=

∂2

∂ε ∂t
.

Since x̃(t, 0) = x(t) we see that I(0) =
∫
f(x, ẋ, t) dt is the desired extremized

functional, and hence we want

dI(ε)

dε

∣∣∣∣
ε=0

= 0.

Note that by using the parameter ε we can now take the ordinary derivative
of I(ε), whereas before we were really taking the functional derivative of F [γ].
Again, be aware that dI/dε = 0 only gives an extremum, and not necessarily
a minimum. Making the distinction between a max and min is tricky, and in
our physical problems it will usually be obvious that we have indeed found a
minimum.

Before addressing the problem of constraints, let us show how to derive the
Euler-Lagrange equation in this new formalism. We have

dI

dε
=

d

dε

∫ t1

t0

f(x̃(t, ε), ˙̃x(t, ε), t) dt

=

∫ t1

t0

(
∂f

∂x̃

dx̃

dε
+
∂f

∂ ˙̃x

d ˙̃x

dε

)
dt

=

∫ t1

t0

[
∂f

∂x̃

dx̃

dε
+
∂f

∂ ˙̃x

d

dt

(
dx̃

dε

)]
dt since

d ˙̃x

dε
=

d

dε

dx̃

dt
=

d

dt

dx̃

dε

=

∫ t1

t0

[
∂f

∂x̃
− d

dt

(
∂f

∂ ˙̃x

)]
dx̃

dε
dt+

∂f

∂ ˙̃x

dx̃

dε

∣∣∣∣
t1

t0

.
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But x̃(t0, ε) = x0 for all ε, so by definition of the derivative we have

dx̃

dε

∣∣∣∣
t0

= lim
δ→0

x̃(t0, ε+ δ) − x̃(t0, ε)

δ
= 0

and similarly for x̃(t1, ε). Therefore the boundary terms vanish and we are left
with

dI

dε
=

∫ t1

t0

[
∂f

∂x̃
− d

dt

(
∂f

∂ ˙̃x

)]
dx̃

dε
dt.

This then gives us

0 =
dI

dε

∣∣∣∣
ε=0

=

∫ t1

t0

[
∂f

∂x̃
− d

dt

(
∂f

∂ ˙̃x

)]

ε=0

dx̃

dε

∣∣∣∣
ε=0

dt

=

∫ t1

t0

[
∂f

∂x
− d

dt

(
∂f

∂ẋ

)]
η dt.

Observe that now this last equation is in terms of x and not x̃. Also, this result
doesn’t depend on the specific form x̃ = x + εη. We could just as easily define

η(t) = dx̃/dε|ε=0 for any one-parameter family of test functions x̃(t, ε) and it
would still be an arbitrary function.

Since η(t) is arbitrary, our lemma tells us that

∂f

∂x
− d

dt

(
∂f

∂ẋ

)
= 0

as before. Note also that taking the limit ε → 0 and letting x̃ → x and ˙̃x → ẋ
depended on x̃ being C2. (Recall we showed that the Euler-Lagrange equation
is second order.)

Now that we have this last formalism available, let us return to the problem
of constraints. We first treat the problem of integral constraints. Thus we
want to minimize the functional I =

∫
f(x, ẋ, t) dt subject to the constraint

J :=
∫
g(x, ẋ, t) dt = const. If we were to proceed as above and let x→ x̃(t, ε),

then the equation J(ε) = const would force a specific value for ε and there
would be no way to vary I(ε).

To get around this problem we introduce a two-parameter family of functions
x̃(t, ε1, ε2) with the following properties:

(1) x̃(t0, ε1, ε2) = x0 and x̃(t1, ε1, ε2) = x1 for all ε1, ε2 (i.e., fixed end-
points);

(2) x̃(t, 0, 0) = x(t) is the desired extremizing function;

(3) x̃(t, ε1, ε2) has continuous derivatives through second order in all vari-
ables.

Define

I(ε1, ε2) =

∫ t1

t0

f(x̃(t, ε1, ε2), ˙̃x(t, ε1, ε2), t) dt
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and

J(ε1, ε2) =

∫ t1

t0

g(x̃(t, ε1, ε2), ˙̃x(t, ε1, ε2), t) dt = const.

We want to extremize the function I(ε1, ε2) subject to the constraint equation
J(ε1, ε2) = const (or J(ε1, ε2) − const = 0). This is just the original Lagrange
multiplier problem, so we form the quantity

K(ε1, ε2) = I(ε1, ε2) + λJ(ε1, ε2). (20)

The requirement ∇(f + λg) = 0 that we had in our general discussion now
becomes

∂K

∂ε1

∣∣∣∣
ε1=ε2=0

=
∂K

∂ε2

∣∣∣∣
ε1=ε2=0

= 0

where

K(ε1, ε2) =

∫
(f + λg) dt :=

∫
h(x̃, ˙̃x, t) dt

and the gradient is with respect to the variables ε1 and ε2.
This is now just the Euler-Lagrange problem that we already solved, so we

have for i = 1, 2

∂K

∂εi
=

∫ t1

t0

(
∂h

∂x̃

∂x̃

∂εi
+
∂h

∂ ˙̃x

∂ ˙̃x

∂εi

)
dt

=

∫ t1

t0

[
∂h

∂x̃
− d

dt

(
∂h

∂ ˙̃x

)]
∂x̃

∂εi
dt

where we used
∂ ˙̃x

∂εi
=

∂

∂εi

dx̃

dt
=

d

dt

∂x̃

∂εi

and where, as usual, property (1) above allows us to drop the boundary terms.
Writing

ηi(t) :=
∂x̃

∂εi

∣∣∣∣
ε1=ε2=0

we have

∂K

∂εi

∣∣∣∣
ε1=ε2=0

=

∫ t1

t0

[
∂h

∂x
− d

dt

(
∂h

∂ẋ

)]
ηi(t) dt = 0 i = 1, 2.

Since ηi(t) is an arbitrary function, by our lemma we again arrive at

∂h

∂x
− d

dt

(
∂h

∂ẋ

)
= 0 (21)

where
h(x, ẋ, t) = f(x, ẋ, t) + λg(x, ẋ, t). (22)
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Equation (21) looks exactly like our previous version of the Euler-Lagrange
equation except that now h = f + λg replaces f .

Note that since the Euler-Lagrange equation is second order (as we saw
earlier) there are two constants of integration in its solution. These, together
with the Lagrange multiplier λ, are just enough to ensure that x(t) passes
through the endpoints x0 = x(t0) and x1 = x(t1), and that J has its correct
value.

Generalizing this result is easy. If we have m integral constraint equations

Jj =

∫
gj(x, ẋ, t) dt = const j = 1, . . . ,m

we introduce m+ 1 parameters εk, k = 1, . . . ,m+ 1 and consider the functions
x̃(t, ε1, . . . , εm+1) := x̃(t, ε) where x̃(t, 0) = x(t) is the extremizing function

(through fixed endpoints). With I(ε) =
∫
f(x̃, ˙̃x, t) dt we would then form the

function

h = f +

m∑

j=1

λjgj λj = const

so that

K(ε) =

∫
h(x̃, ˙̃x, t) dt =

∫
f(x̃, ˙̃x, t) dt+

m∑

j=1

λj

∫
gj(x̃, ˙̃x, t) dt

and again require that

∂K

∂εk

∣∣∣∣
ε=0

= 0 for all k = 1, . . . ,m+ 1.

In addition, we could have n dependent variables xi(t) so that I =
∫
f(xi, ẋi, t) dt

(where f is a function of x1(t), . . . , xn(t)) and Jj =
∫
gj(xi, ẋi, t) dt for j =

1, . . . ,m. Now we have

I(ε) =

∫
f(x̃i, ˙̃xi, t) dt where x̃i = x̃i(t, ε1, . . . , εm+1)

Jj(ε) =

∫
gj(x̃i, ˙̃xi, t) dt

K(ε) =

∫
h(x̃i, ˙̃xi, t) dt

with

h(x̃i, ˙̃xi, t) = f(x̃i, ˙̃xi, t) +

m∑

j=1

λjgj(x̃i, ˙̃xi, t).

Then

∂K

∂εk
=

∫ n∑

i=1

(
∂h

∂x̃i

∂x̃i

∂εk
+
∂h

∂ ˙̃xi

∂ ˙̃xi

∂εk

)
dt k = 1, . . . ,m+ 1

=

∫ n∑

i=1

[
∂h

∂x̃i
− d

dt

(
∂h

∂ ˙̃xi

)]
∂x̃i

∂εk
dt (since all boundary terms vanish)
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so that

∂K

∂εk

∣∣∣∣
ε=0

=

∫ n∑

i=1

[
∂h

∂xi
− d

dt

(
∂h

∂ẋi

)]
ηik(t) dt = 0 k = 1, . . . ,m+ 1

where

ηik(t) :=
∂x̃i(t, ε)

∂εk

∣∣∣∣
ε=0

for i = 1, . . . , n and k = 1, . . . ,m+ 1.

Finally, since each ηik(t) is arbitrary we have

∂h

∂xi
− d

dt

(
∂h

∂ẋi

)
= 0 for each i = 1, . . . , n (23)

where

h(xi, ẋi, t) = f(xi, ẋi, t) +

m∑

j=1

λjgj(xi, ẋi, t). (24)

(Equation (23) follows by noting that since each ηik is arbitrary, for any fixed k
we can let ηik = 0 for all i except one, say i = l. Then ∂h/∂xl−(d/dt)(∂h/∂ẋl) =
0.)

These equations can be solved because we have n variables xi plus m of
the λj ’s as unknowns, but we also have n Euler-Lagrange equations plus m
constraint equations.

Example 9. Let us solve the problem of a freely hanging perfectly flexible rope
with fixed endpoints. This is referred to as an isoperimetric problem.

x

y

(xa, ya)

(xb, yb)

Our approach will be to minimize the potential energy of the rope.
Let ρ be the mass per unit length. The the potential energy relative to the

x-axis is

ρg

∫
y ds = ρg

∫ xb

xa

y
√

1 + y′2 dx.

The constraint is that the length of the rope is fixed:

L =

∫
ds =

∫ xb

xa

√
1 + y′2 dx.
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We form the function

h = ρgy
√

1 + y′2 + λ
√

1 + y′2

= ρgy
√

1 + y′2 − ρgy0
√

1 + y′2

= ρg
√

1 + y′2(y − y0)

where we have defined the constant y0 by λ = −ρgy0 and now y0 is to be
determined.

Change variables from y to z = y − y0. Then z′ = y′ and we have
h = ρgz

√
1 + z′2. But now this is exactly the same form of function as we

had in solving the surface of revolution problem. And as Feynman said, “The
same equations have the same solution.” So the solution to this problem is the
catenary z = α cosh[(x − x0)/α] or

y = y0 + α cosh

(
x− x0

α

)

where x0, y0 and α are fixed by the requirements that the ends are at (xa, ya)
and (xb, yb) and that the length of the rope is fixed.

Example 10. Another famous solution solves the Dido problem: Find the
curve with fixed length that encloses the maximum area. (Actually, this is only
one version of the problem.) Here we want the functions x(t), y(t) such that the
curve (x(t), y(t)) encloses the maximum area. We will use the following formula
for the enclosed area:

A =
1

2

∫ tb

ta

(xẏ − ẋy) dt.

This formula is a consequence of Green’s Theorem, which you should have had
in calculus:

∮

C

f(x, y) dx+ g(x, y) dy =

∫

R

(
∂g

∂x
− ∂f

∂y

)
dA.

If we let f = 0 and g = x in this formula, then
∮
xdy =

∫
dA = A. And letting

f = −y and g = 0 yields
∮
−y dx =

∫
dA = A. Therefore

A =
1

2

∫
xdy − y dx =

1

2

∫
(xẏ − ẋy) dt.

The length of the curve is given by

L =

∫
ds =

∫ tb

ta

(ẋ2 + ẏ2)1/2 dt
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and hence our function h is

h(x, y, ẋ, ẏ, t) =
1

2
(xẏ − ẋy) + λ(ẋ2 + ẏ2)1/2.

Note that we have one independent variable, two dependent variables, one con-
straint equation and hence one Lagrange multiplier. From equation (23) we
obtain the equations

0 =
∂h

∂x
− d

dt

∂h

∂ẋ
=

1

2
ẏ − d

dt

[
− 1

2
y + λ

ẋ

(ẋ2 + ẏ2)1/2

]

or

0 = ẏ − λ
d

dt

[
ẋ

(ẋ2 + ẏ2)1/2

]

and

0 =
∂h

∂y
− d

dt

∂h

∂ẏ
= −1

2
ẋ− d

dt

[
1

2
x+ λ

ẏ

(ẋ2 + ẏ2)1/2

]

or

0 = ẋ+ λ
d

dt

[
ẏ

(ẋ2 + ẏ2)1/2

]
.

Both of these equations are exact differentials and can be easily integrated to
yield

y − y0 = λ
ẋ

(ẋ2 + ẏ2)1/2
and x− x0 = −λ ẏ

(ẋ2 + ẏ2)1/2

where x0, y0 are determined by the fixed end points.
Clearly, squaring both equations and adding gives

(x− x0)
2 + (y − y0)

2 = λ2

which is the equation of a circle of radius λ centered at (x0, y0). Since the length
L is fixed, we have λ = L/2π. The points x0, y0 are chosen so that the circle
passes through the chosen endpoint (which is the same as the starting point for
a closed curve). Also, here is an example of the extremum being a maximum
and not a minimum (as is obvious from its physical interpretation).

The last topic we shall address is the problem of algebraic (or non-integral)
constraints. These are the types of constraints that usually arise in classical
mechanics.

The problem we will consider is this: Suppose we want to minimize the
functional I =

∫ t1
t0
f(xi, ẋi, t) dt (where i = 1, . . . , n) subject to the constraint

g(xi, t) = 0. Be sure to note that g does not depend on the ẋi’s. Exactly
as we did before, we introduce two parameters ε1, ε2 together with the varied
functions x̃i(t, ε1, ε2) such that
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(1) x̃i(t0, ε1, ε2) = xi0 and x̃i(t1, ε1, ε2) = xi1 for all ε1, ε2 (i.e., fixed end-
points);

(2) x̃i(t, 0, 0) = xi(t) are the desired extremizing functions;

(3) x̃i(t, ε1, ε2) has continuous derivatives through second order in all vari-
ables.

Again form I(ε1, ε2) =
∫ t1

t0
f(x̃i, ˙̃xi, t) dt and require that (∂I/∂εj)ε=0 = 0

subject to g(x̃i, t) = 0. We note that the integral constraint considered previ-
ously is a global constraint in that after the integration we are left with only a
relation between the ε variables. However, g = 0 is a local constraint because
it allows us to write one of the x̃i in terms of the other n− 1 of the x̃i’s. If we
were to integrate g we would lose most of its content.

But we can turn it into an integral constraint and still keep its generality if
we multiply g by an arbitary function ϕ(t) and then integrate. This yields the
integral constraint

J(ε1, ε2) =

∫ t1

t0

ϕ(t)g(x̃i, t) dt = 0.

Now, just as before, we let

K(ε1, ε2) = I(ε1, ε2) + λJ(ε1, ε2)

and require
∂K

∂ε1

∣∣∣∣
ε=0

= 0 =
∂K

∂ε2

∣∣∣∣
ε=0

where

K(ε1, ε2) =

∫ t1

t0

h(x̃i, ˙̃xi, t) dt

and h = f + λφg.
We now define λ(t) := λφ(t) (which is a completely arbitrary function so

far) and hence
h(xi, ẋi, t) = f(xi, ẋi, t) + λ(t)g(xi, t).

Proceeding in the usual manner we have (for j = 1, 2)

∂K

∂εj
=

n∑

i=1

∫ t1

t0

(
∂h

∂x̃i

∂x̃i

∂εj
+
∂h

∂ ˙̃xi

∂ ˙̃xi

∂εj

)
dt

=

n∑

i=1

∫ t1

t0

[
∂h

∂x̃i
− d

dt

(
∂h

∂ ˙̃xi

)]
∂x̃i

∂εj
dt.

Write
∂x̃i

∂εj

∣∣∣∣
ε1=ε2=0

:= ηi
j(t)
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so that evaluating (∂K/∂εj)ε=0 yields (for each j = 1, 2)

n∑

i=1

∫ t1

t0

[
∂h

∂xi
− d

dt

(
∂h

∂ẋi

)]
ηi

j(t) dt = 0. (25)

However, at this point we have to be careful — the ηi
j(t) are not all inde-

pendent. The reason for this is easily seen if we differentiate g(x̃i, t) = 0 with
respect to εj:

0 =
∂g

∂εj
=

n∑

i=1

∂g

∂x̃i

∂x̃i

∂εj

and hence for each j = 1, 2 we have

0 =
∂g

∂εj

∣∣∣∣
ε=0

=

n∑

i=1

∂g

∂xi
ηi

j(t)

so that for each j the functions ηi
j(t) are linearly related.

To proceed, we take advantage of the fact that λ(t) is still unspecified. Writ-
ing out equation (25) we have (remember g is independent of ẋi)

n∑

i=1

∫ t1

t0

[
∂f

∂xi
− d

dt

(
∂f

∂ẋi

)
+ λ(t)

∂g

∂xi

]
ηi

j(t) dt = 0. (26)

Choose i = 1 (a completely arbitrary choice) and assume that η1
j (t) is given in

terms of the rest of the ηi
j(t) (where j is fixed). We choose λ(t) so that

∂f

∂x1
− d

dt

(
∂f

∂ẋ1

)
+ λ(t)

∂g

∂x1
= 0.

This means we don’t need to know η1
j because its coefficient in equation (26) is

zero anyway, and we are left with

n∑

i=2

∫ t1

t0

[
∂f

∂xi
− d

dt

(
∂f

∂ẋi

)
+ λ(t)

∂g

∂xi

]
ηi

j(t) dt = 0

where there is no i = 1 term in the sum.
Now the remaining n− 1 of the ηi

j(t) are completely independent so we may
equate their coefficients in (26) to zero:

∂f

∂xi
− d

dt

(
∂f

∂ẋi

)
+ λ(t)

∂g

∂xi
= 0 for i = 2, . . . , n.

This equation is identical to the result for i = 1 even though it was obtained in
a completely different manner. In any case, combining these results we have

∂h

∂xi
− d

dt

(
∂h

∂ẋi

)
= 0 for all i = 1, . . . , n (27)
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where
h(xi, ẋi, t) = f(xi, ẋi, t) + λ(t)g(xi, t). (28)

Note that no derivative of λ(t) appears because g is independent of ẋi.
In the case of multiple constraints it should be obvious that we have

∂f

∂xi
− d

dt

(
∂f

∂ẋi

)
+

∑

j

λj(t)
∂gj

∂xi
= 0. (29)

Also be sure to realize that in the case of integral constraints, the Lagrange
multipliers λ are constants, whereas in the case of algebraic constraints, the
multipliers λ(t) are functions of the independent variable t.

Example 11. There are a number of ways to show that the shortest path
between two points on the surface of a sphere is a great circle. In this example
we will prove this using Euler’s equation with Lagrange multipliers.

On a sphere of radius a, the path length is given by

s =

∫
ds =

∫ √
dx2 + dy2 + dz2 =

∫ √
1 + y′2 + z′2 dx

subject to the constraint

g(x, y, z) = x2 + y2 + z2 − a2 = 0.

Here x is the independent variable, so we have equation (29) for both y and z:

− d

dx

[
y′

(1 + y′2 + z′2)1/2

]
+ 2λ(x)y = 0

and

− d

dx

[
z′

(1 + y′2 + z′2)1/2

]
+ 2λ(x)z = 0.

Solving both of these for 2λ and equating them we obtain

1

y

d

dx

[
y′

(1 + y′2 + z′2)1/2

]
− 1

z

d

dx

[
z′

(1 + y′2 + z′2)1/2

]
= 0

which becomes

z[y′′(1 + y′2 + z′2) − y′(y′y′′ + z′z′′)]− y[z′′(1 + y′2 + z′2)− z′(y′y′′ + z′z′′)] = 0

or simply
zy′′ + (yy′ + zz′)z′y′′ − yz′′ − (yy′ + zz′)y′z′′ = 0.

Taking the derivative of the constraint equation with respect to x yields x +
yy′+zz′ = 0 so that yy′+zz′ = −x. Substituting this into the previous equation
results in

(z − xz′)y′′ = (y − xy′)z′′. (30)
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It’s not immediately obvious, but this is the intersection of the sphere with a
plane passing through the origin. To see this, recall that the equation of a plane
through the point x0 and perpendicular to the vector n is the set of points x

satisfying (x−x0)·n = 0. In this case we want x0 to be the origin, and if we write
n = (nx, ny, nz) then the equation of the plane becomes xnx + yny + znz = 0
which is of the form Ax + By = z. Taking the derivative with respect to x
gives A + By′ = z′ and taking the derivative again gives By′′ = z′′. Therefore
B = z′′/y′′ so that A = z′ − y′z′′/y′′. Using these, the equation of a plane
becomes exactly equation (30). In other words, equation (30) represents the
intersection of a plane through the origin and the sphere. This defines a great
circle on the sphere.

8 Extremization of Multiple Integrals

We now turn our attention to the problem of extremizing an integral with more
than one independent variable. We start with the simplest case of two such
variables.

So, let y = y(x1, x2) be a function of two real variables, and consider the
integral

I =

∫

D

f(y, ∂1y, ∂2y, x1, x2) dx1dx2

where we use the shorthand notation ∂i = ∂/∂xi. The integral is over some
domain D in the x1x2-plane, and we let the boundary of this domain be denoted
by ∂D. (This is standard notation for the boundary, and does not refer to the
partial derivative of anything.) In our previous cases, we specified the value of
x(t) at the endpoints t1, t2 of an interval. Now we must specify the value of
y(x1, x2) on ∂D, and hence we write

y(x1, x2)
∣∣
∂D

= g(∂D)

where g(∂D) is some function defined on the one-dimensional curve ∂D.
We again introduce a one-parameter family of test functions ỹ that have the

properties

(1) ỹ(x1, x2, ε)
∣∣
∂D

= g(∂D) for all ε;

(2) ỹ(x1, x2, 0) = y(x1, x2), the desired extremizing function;

(3) ỹ(x1, x2, ε) has continuous first and second derivatives.

As before, we form

I(ε) =

∫

D

f(ỹ, ∂1ỹ, ∂2ỹ, x1, x2) dx1dx2

and require that
dI

dε

∣∣∣∣
ε=0

= 0.
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Then we have

dI

dε
=

∫

D

[
∂f

∂ỹ

dỹ

dε
+

∂f

∂(∂1ỹ)

d

dε

(
∂ỹ

∂x1

)
+

∂f

∂(∂2ỹ)

d

dε

(
∂ỹ

∂x2

)]
dx1dx2

=

∫

D

[
∂f

∂ỹ

dỹ

dε
+

∂f

∂(∂1ỹ)

∂

∂x1

(
dỹ

dε

)
+

∂f

∂(∂2ỹ)

∂

∂x2

(
dỹ

dε

)]
dx1dx2

To effect the integration by parts in this case, we again refer to Green’s
theorem in the form

∫

D

[
∂P

∂x1
+
∂Q

∂x2

]
dx1dx2 =

∮

∂D

P dx2 −Qdx1.

Let us write

P = R(x1, x2)A(x1, x2) and Q = R(x1, x2)B(x1, x2)

so that Green’s Theorem may be written as

∫

D

[
A
∂R

∂x1
+B

∂R

∂x2

]
dx1dx2

= −
∫

D

[
∂A

∂x1
+
∂B

∂x2

]
Rdx1dx2 +

∫

∂D

[Adx2 −B dx1]R.

To apply this result to the second and third terms in the integrand of dI/dε,
we let

R =
dỹ

dε
A =

∂f

∂(∂1ỹ)
B =

∂f

∂(∂2ỹ)

to obtain

dI

dε
=

∫

D

[
∂f

∂ỹ
− ∂

∂x1

(
∂f

∂(∂1ỹ)

)
− ∂

∂x2

(
∂f

∂(∂2ỹ)

)]
dỹ

dε
dx1dx2

+

∫

∂D

dỹ

dε

[
∂f

∂(∂1ỹ)
dx2 −

∂f

∂(∂2ỹ)
dx1

]

But by property (1) above we have dỹ/dε = 0 on ∂D, and hence the second
integral above vanishes. Using our extremum condition dI/dε|ε=0 = 0 we are
left with

∫

D

[
∂f

∂y
− ∂

∂x1

(
∂f

∂(∂1y)

)
− ∂

∂x2

(
∂f

∂(∂2y)

)]
η(x1, x2) dx1dx2 = 0

where

η(x1, x2) =
dỹ

dε

∣∣∣∣
ε=0

.

Since η(x1, x2) is an arbitrary function on D, we have the Euler-Lagrange equa-
tion for two independent variables

∂f

∂y
− ∂

∂x1

(
∂f

∂(∂1y)

)
− ∂

∂x2

(
∂f

∂(∂2y)

)
= 0. (31)
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Example 12. Let us use equation (31) to derive the wave equation for a vi-
brating string. Our approach will be to use Hamilton’s principle as mentioned
in Example 3.

We consider a perfectly flexible elastic string stretched under constant ten-
sion τ along the x-axis with endpoints fixed at x = 0 and x = l. Assume that
the string undergoes small, transverse vibrations in the absence of gravity. Let
the amplitude (i.e., string displacement) of the vibrations at time t be y(x, t)
where small vibrations means |∂y/∂x| ≪ 1. The velocity at any point is given
by ∂y/∂t, and the fixed endpoint condition is y(0, t) = y(l, t) = 0 for all t.

Next we must find the Lagrangian for the string. Let ρ(x) be the mass
density of the string. Then an element dx of string has mass ρ(x) dx with
kinetic energy

dT =
1

2
ρ(x)dx

(
∂y

∂t

)2

and hence the total kinetic energy of the string is given by

T =
1

2

∫ l

o

ρ(x)

(
∂y

∂t

)2

dx.

Now, potential energy is defined as the work required to put the system
into a given configuration. In this case, the work required to stretch the string
from its equilibrium length l to another length s against the constant force τ is
V = τ(s − l) = τ(

∫
ds− l) or

V = τ

[ ∫ l

0

√
dx2 + dy2 − l

]
= τ

[ ∫ l

0

√
1 + (∂y/∂x)2 dx− l

]
.

But we are assuming |∂y/∂x| ≪ 1 so that

√
1 + (∂y/∂x)2 ∼= 1 +

1

2

(
∂y

∂x

)2

and hence

V = τ

[ ∫ l

0

{
1 +

1

2

(
∂y

∂x

)2}
dx− l

]
=

1

2
τ

∫ l

0

(
∂y

∂x

)2

dx.

The Lagrangian L = T − V now becomes

L =

∫ l

0

1

2

[
ρ(x)

(
∂y

∂t

)2

− τ

(
∂y

∂x

)2]
dx.

The integrand

L =
1

2

[
ρ(x)

(
∂y

∂t

)2

− τ

(
∂y

∂x

)2]
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is called the Lagrangian density because its spatial integral is just L. Hamil-
ton’s principle says that the actual motion of the system is given by the path
that extremizes the integral

I =

∫
Ldt =

∫
L dx dt.

(The integral
∫
Ldt is frequently called the action and denoted by S.) From

equation (31) we have

∂L

∂y
− ∂

∂x

(
∂L

∂(∂xy)

)
− ∂

∂t

(
∂L

∂(∂ty)

)
= 0

and using our Lagrangian density this becomes

0 − τ
∂2y

∂x2
− ρ(x)

∂2y

∂t2
= 0

or simply
∂2y

∂x2
=
ρ(x)

τ

∂2y

∂t2
.

This is the equation of motion (the wave equation) for the string.

Without working through the details, it is easy to write down some general-
izations of this formalism. First suppose that we have n independent variables
x1, . . . , xn. We want to extremize the integral

I =

∫

D

L (y, ∂1y, . . . , ∂ny, x1, . . . , xn) dnx

where y = y(x1, . . . , xn), D is some region of R
n, dnx = dx1 · · · dxn is the

n-dimensional volume element, and y is given some prescribed value on the
(n − 1)-dimensional boundary ∂D. Then the Euler-Lagrange equation which
gives the extremizing path y is

δL

δy
:=

∂L

∂y
−

n∑

i=1

∂

∂xi

(
∂L

∂(∂iy)

)
= 0 (32)

where we have defined the functional derivative δL /δy by this equation.
Actually, using variational notation and the summation convention, this is

easy to derive directly. Indeed, we have

δI =

∫

D

δL (y, ∂1y, . . . , ∂ny, x1, . . . , xn) dnx

=

∫

D

[
∂L

∂y
δy +

∂L

∂(∂iy)
δ∂iy

]
dnx
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=

∫

D

[
∂L

∂y
δy +

∂L

∂(∂iy)
∂iδy

]
dnx

=

∫

D

[
∂L

∂y
δy + ∂i

(
∂L

∂(∂iy)
δy

)
− ∂i

(
∂L

∂(∂iy)

)
δy

]
dnx.

But the n-dimensional version of the Divergence Theorem reads

∫

D

∂if
i dnx =

∫

∂D

f idai

where dai is the ith component of the n-dimensional area element. (This is just∫
D ∇ · f dnx =

∫
∂D f · da.) Therefore the middle term in the integrand becomes

a surface integral over ∂D where δy is assumed to vanish, and hence we are left
with

δI =

∫

D

[
∂L

∂y
− ∂i

(
∂L

∂(∂iy)

)]
δy dnx

Since δy is arbitrary, we see that δI = 0 implies

∂L

∂y
− ∂i

(
∂L

∂(∂iy)

)
= 0

which is just equation (32).
As a passing remark, in quantum field theory we would have dnx = d4x =

dx0dx1dx2dx3 = dt dx dy dz, and the dependent variable y is frequently written
as ϕ in the case of a scalar field. Then the Euler-Lagrange for the quantum field
ϕ is written as

∂L

∂ϕ
− ∂µ

(
∂L

∂(∂µϕ)

)
= 0

or
∂L

∂ϕ
− ∂µ

(
∂L

∂ϕ,µ

)
= 0 (33)

where it is conventional to use Greek letters to indicate a summation over the
four spacetime variables, and ϕ,µ = ∂µϕ.

Example 13. Consider the Lagrangian density

L =
1

2

[
(∂αϕ)(∂αϕ) −m2ϕ2

]

=
1

2

[
gαβ(∂αϕ)(∂βϕ) −m2ϕ2

]
.

where m is a constant. Then

∂L

∂ϕ
= −m2ϕ
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while
∂L

∂(∂µϕ)
=

1

2
gαβ(δµ

α ∂βϕ+ ∂αϕ δ
µ
β ) = ∂µϕ.

Applying equation (33) we now have

∂µ∂
µϕ+m2ϕ = 0

which is called the Klein-Gordon equation, and is a relativistically invariant
equation that describes a spinless particle of mass m. The operator ∂µ∂

µ is
called the d’Alembertian and is frequently written in various forms as ∂µ∂

µ =
∂ · ∂ = ∂2 = �

2 = �, and the Klein-Gordon equation is often written as

(� +m2)ϕ = 0.

As an aside, this equation follows from the relativistic expression E2 =
p2c2 + m2c4 and the usual quantum mechanical substitutions E → i~(∂/∂t)
and p → −i~∇ so that

−~
2 ∂

2ϕ

∂t2
= (−c2~

2∇2 +m2c4)ϕ

or (
∂2

∂(ct)2
−∇2 +

m2c2

~2

)
ϕ = 0.

Letting µ = mc/~ (a frequently used notation) this is

(
∂2

∂(x0)2
− ∇

2 + µ2

)
ϕ = (� + µ2)ϕ = 0

which is the same as (� +m2)ϕ = 0 if we are using the units c = ~ = 1.

Carrying this even further, suppose that in addition we have m dependent
variables y1, . . . , ym where yi = yi(x1, . . . , xn). Then extremizing the integral

I =

∫

D

L (yj , ∂iyj , xi)d
nx

leads to the set of m coupled second order PDEs

∂L

∂yj
−

n∑

i=1

∂

∂xi

(
∂L

∂(∂iyj)

)
= 0, j = 1, . . . ,m. (34)

Finally, suppose we have m dependent variables, n independent variables
and p integral equations of constraint of the form

Jk =

∫

D

gk(yj , ∂iyj , xi) d
nx = const
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where i = 1, . . . , n; j = 1, . . . ,m and k = 1, . . . , p. We again want to extremize
the integral

I =

∫

D

L (yj , ∂iyj, xi) d
nx

subject to these constraints. In analogy to what we have done previously, let us
form the function

h = L +

p∑

k=1

λkgk

where the λk are constant Lagrange multipliers. Now h will satisfy the system
of Euler-Lagrange equations

∂h

∂yj
−

n∑

i=1

∂

∂xi

(
∂h

∂(∂iyj)

)
= 0, j = 1, . . . ,m. (35)

Example 14. Consider the Lagrange density

L =
~

2

2m

[
∂ψ∗

∂x

∂ψ

∂x
+
∂ψ∗

∂y

∂ψ

∂y
+
∂ψ∗

∂z

∂ψ

∂z

]
+ V (x, y, z)ψ∗ψ

where ψ = ψ(x, y, z) is a complex-valued function and V (x, y, z) is real. We
want to extremize the functional

I =

∫

D

L d3x

subject to the constraint

J =

∫

D

ψ∗ψ d3x = 1.

Note this is a variational problem with three independent variables (x, y, z), two
dependent variables (the real and imaginary parts ψR = y1 and ψI = y2 of ψ)
and one constraint.

Observing that, e.g.,

∂ψ∗

∂x

∂ψ

∂x
=

(
∂ψR

∂x
− i

∂ψI

∂x

)(
∂ψR

∂x
+ i

∂ψI

∂x

)

=

(
∂ψR

∂x

)2

+

(
∂ψI

∂x

)2

and
ψ∗ψ = ψ2

R + ψ2
I
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we form

h = L + λψ∗ψ

=
~

2

2m

[(
∂ψR

∂x

)2

+

(
∂ψR

∂y

)2

+

(
∂ψR

∂z

)2

+

(
∂ψI

∂x

)2

+

(
∂ψI

∂y

)2

+

(
∂ψI

∂z

)2]

+ (V (x, y, z) + λ)(ψ2
R + ψ2

I )

=
~

2

2m

3∑

i=1

[(
∂ψR

∂xi

)2

+

(
∂ψI

∂xi

)2]
+ (V + λ)(ψ2

R + ψ2
I ).

Using this in equation (35) with y1 = ψR and y2 = ψI we obtain the equations

V ψR + λψR − ~
2

2m

3∑

i=1

∂

∂xi

(
∂ψR

∂xi

)
= V ψR + λψR − ~

2

2m
∇2ψR = 0

and

V ψI + λψI − ~
2

2m

3∑

i=1

∂

∂xi

(
∂ψI

∂xi

)
= V ψI + λψI − ~

2

2m
∇2ψI = 0.

Writing λ = −E we can combine these into the single equation

− ~
2

2m
∇2ψ + V ψ = Eψ

which you should recognize as the time-independent Schrödinger equation.

9 Symmetries and Noether’s Theorem

In this section we will derive the discrete mechanical version of the famous
theorem due to Emmy Noether. In other words, we will consider only systems
with a single independent variable x and a finite number of dependent variables
y1, . . . , yn. While this will allow us to derive some of the basic conservation laws
of classical mechanics, the real power and use of Noether’s theorem lies in its
formulation in field theory in 4-dimensional spacetime. We will take up that
formulation in the following section.

Before diving into the general theory of variations, let us first take a look at
the particular case of a function f = f(xi, ẋi, t) that satisfies the Euler-Lagrange
equations

∂f

∂xi
− d

dt

(
∂f

∂ẋi

)
= 0, i = 1, . . . , n

and where f has no explicit time dependence, i.e, ∂f/∂t = 0. Then an arbitrary
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variation in f yields

δf =
n∑

i=1

[
∂f

∂xi
δxi +

∂f

∂ẋi
δẋi

]
=

n∑

i=1

[
∂f

∂xi
δxi +

∂f

∂ẋi

d

dt
δxi

]

=
n∑

i=1

[
∂f

∂xi
δxi +

d

dt

(
∂f

∂ẋi
δxi

)
− d

dt

(
∂f

∂ẋi

)
δxi

]
.

The first and last terms cancel by the Euler-Lagrange equation and we are left
with

δf =
d

dt

n∑

i=1

∂f

∂ẋi
δxi.

Now, if f is invariant under the transformation xi → xi +δxi, then by definition
we have δf = 0 so that

n∑

i=1

∂f

∂ẋi
δxi = const.

This is a simple version of Noether’s theorem: a symmetry (invariance) of a
function satisfying the Euler-Lagrange equation leads to a conserved quantity.

With this simple example as a model, we now turn our attention to the more
general problem of arbitrarily varied paths.

In all of our work so far we have only considered variations where the varied
paths were given fixed, specified values on the boundary regions (e.g., fixed
endpoints for a path x(t)), and the independent variables themselves were never
varied. Now we want to relax both of these requirements.

For example, we could ask for the path that minimizes the travel time taken
by a particle moving under gravity from a fixed point to a given vertical line. In
this case, one end is fixed and the other is free to lie anywhere on the vertical line.
Also, we will see that if the independent variable is the time t, then invariance
of the Lagrangian under time translation leads to a conserved Hamiltonian (and
hence to conservation of energy if H = E).

Up to this point, we have looked at the integral (with a slight change of
notation)

I =

∫ xb

xa

f(y(x), y′(x), x) dx (36)

under variations y(x) → ỹ(x, ε) with fixed endpoints, and required that the in-
tegral be an extremum with respect to ε. This resulted in the Euler-Lagrange
equation (a second-order differential equation for y(x)). Now we will look at
this integral under more general variations where the boundary terms do not
necessarily vanish, and where the independent variable x is also varied. Further-
more, instead of requiring that the integral be an extremum, we will investigate
the consequences of requiring that it be invariant under the transformations.
In other words, if I → Ī(ε), then we will require that Ī(ε) = I. This will give
us a first-order equation that is a generalization of the second form of Euler’s
equation (see equation (14)).
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Recall that our derivations dealt in general with a family of functions ỹ(x, ε).
A particular example of this was a choice of the form ỹ(x, ε) = y(x) + εη(x)
where η(xa) = η(xb) = 0. Now we consider more general variations where η can
depend on the dependent variables as well, and where the independent variable
is also varied. Thus we will consider the variations

y(x) → ỹ(x, y, y′) = y(x) + εη(x, y, y′) (37)

and
x→ x̄ = x+ εξ(x, y, y′) (38)

and use them to form the integral

Ī(ε) =

∫ x̄b

x̄a

f(ỹ(x̄), ỹ′(x̄), x̄) dx̄. (39)

Be sure to note that Ī(ε = 0) = I. Also note that the limits of integration here
are defined by evaluating equation (38) at the endpoints xa and xb.

It is important to understand just what the function ỹ(x̄) really means. It
does not mean to replace x by x̄ in equation (37). It means that we use equation
(38) to solve for x as a function of x̄, and then use that x in equation (37). Also,
since we will be expanding Ī(ε) only through first order in ε, we can freely switch
between x and x̄ in the functions η and ξ. This is because η and ξ already have
a factor of ε in front of them, so their arguments need only be to zeroth order
in ε, and in zeroth order x and x̄ are the same. Furthermore, a prime denotes
differentiation with respect to the appropriate independent variable. Thus the
prime on ỹ′(x̄) denotes differentiation with respect to x̄, while the prime on
y′(x) denotes differentiation with respect to x.

Now let us follow through with this program. We first use equation (38) to
write x in terms of x̄, keeping in mind what we just said about the argument of
ξ and η. Then x = x̄− εξ(x̄, y, y′) so that equation (37) becomes

ỹ(x̄) = y(x̄− εξ(x̄, y, y′)) + εη(x̄, y, y′)

where y and y′ are functions of x̄. Expanding through first order in ε we have

ỹ(x̄) = y(x̄) − εξ(x̄, y, y′)
dy

dx̄
+ εη(x̄, y, y′)

or
ỹ(x̄) = y(x̄) + ερ(x̄, y, y′) (40)

where for simplicity we have defined

ρ(x̄, y, y′) = η(x̄, y, y′) − ξ(x̄, y, y′)
dy

dx̄
.

Using equation (40) in (39) we then have

Ī(ε) =

∫ x̄b

x̄a

f(y(x̄) + ερ(x̄, y, y′), y′(x̄) + ερ′(x̄, y, y′), x̄) dx̄.
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From equation (38) we write

x̄a = xa + εξ(x, y, y′)
∣∣
x=xa

:= xa + δa

x̄b = xb + εξ(x, y, y′)
∣∣
x=xb

:= xb + δb

and then break up the integral as follows:
∫ x̄b

x̄a

=

∫ xb+δb

xa+δa

=

∫ xb

xa+δa

+

∫ xb+δb

xb

=

∫ xb

xa

−
∫ xa+δa

xa

+

∫ xb+δb

xb

.

Since the second and third integrals on the right hand side of this equation have
an integration range proportional to ε (by definition of δa and δb), we can drop
all terms in their integrands that are of order ε or higher. Then we can write

Ī(ε) =

∫ xb

xa

f(y(x̄) + ερ(x̄, y, y′), y′(x̄) + ερ′(x̄, y, y′), x̄) dx̄

+

∫ xb+δb

xb

f(y(x̄), y′(x̄), x̄) dx̄−
∫ xa+δa

xa

f(y(x̄), y′(x̄), x̄) dx̄.

The first of these integrals we expand through order ε. For the second and third,
note that everything is continuous and the integration range is infinitesimal.
Then each of these two integrals is just the integration range times the integrand
evaluated at xb and xa respectively. This yields

Ī(ε) =

∫ xb

xa

f(y(x̄), y′(x̄), x̄) dx̄

+ ε

∫ xb

xa

[
ρ(x̄, y, y′)

∂

∂y
f(y, y′, x̄) + ρ′(x̄, y, y′)

∂

∂y′
f(y, y′, x̄)

]
dx̄

+ δbf(y, y′, x̄)
∣∣
x̄=xb

− δaf(y, y′, x̄)
∣∣
x̄=xa

.

Now consider the second term in the second integral. Integrating by parts
and using the definition of ρ we have

∫ xb

xa

ρ′
∂f

∂y′
dx̄ =

∫ xb

xa

[
d

dx̄

(
ρ
∂f

∂y′

)
− ρ

d

dx̄

(
∂f

∂y′

)]
dx̄

=

(
η − ξ

dy

dx̄

)
∂f

∂y′

∣∣∣∣
x̄=xb

x̄=xa

−
∫ xb

xa

(
η − ξ

dy

dx̄

)
d

dx̄

(
∂f

∂y′

)
dx̄

Using the definitions of δa, δb and ρ, we can now write

Ī(ε) =

∫ xb

xa

f(y(x̄), y′(x̄), x̄) dx̄

+ ε

∫ xb

xa

(
η − ξ

dy

dx̄

)[
∂f

∂y
− d

dx̄

(
∂f

∂y′

)]
dx̄

+ ε

[(
η − ξ

dy

dx̄

)
∂f

∂y′
+ ξf

]xb

xa
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But now realize that x̄ has become just a dummy variable of integration because
the limits of integration only depend on xa and xb. This means we can replace x̄
by simply x throughout, and in particular the first integral is just I = Ī(ε = 0).
Therefore we may write

Ī(ε) − I = ε

∫ xb

xa

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
(η − ξy′) dx

+ ε

[
η
∂f

∂y′
+ ξ

(
f − y′

∂f

∂y′

)]xb

xa

. (41)

Let’s look at a special case of this result. If we let ξ = 0 (which means
that we don’t vary the independent variable) and require that η(x, y, y′)

∣∣
xa

=

η(x, y, y′)
∣∣
xb

= 0 (so the endpoints are fixed) then we obtain

Ī(ε) − Ī(0) = ε

∫ xb

xa

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η dx.

If we now require that

lim
ε→0

Ī(ε) − Ī(0)

ε
=
dĪ

dε

∣∣∣∣
ε=0

= 0

then the fact that η is arbitrary implies that we arrive at the usual Euler-
Lagrange equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0.

It should be clear that this special case just duplicates the conditions of the
original Euler-Lagrange problem, and hence we should expect this result.

It should also be easy to see that the generalization of equation (41) to the
case of several dependent variables y1, . . . , yn yields

Ī(ε) − I = ε

∫ xb

xa

n∑

i=1

[
∂f

∂yi
− d

dx

(
∂f

∂y′i

)]
(ηi − ξy′i) dx

+ ε

[ n∑

i=1

ηi
∂f

∂y′i
+ ξ

(
f −

n∑

i=1

y′i
∂f

∂y′i

)]xb

xa

(42)

where

I =

∫ xb

xa

f(y1, . . . , yn, y
′

1, . . . , y
′

n, x) dx

ỹi(x) = yi(x) + εηi(x, y1, . . . , yn, y
′

1, . . . , y
′

n)

x̄ = x+ εξ(x, y1, . . . , yn, y
′

1, . . . , y
′

n).

Before stating and proving Noether’s theorem, let us look at a special case
that illustrates the ideas involved. Recall that the conserved quantity defined
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in equation (14) was derived under the assumption that f(y, y′, x) (or f(x, ẋ, t)
in our earlier notation) satisfied the Euler-Lagrange equation had no explicit

dependence on the independent variable. We will now show that we can obtain
this same result as a consequence of the fact that if f(y, y′, x) = f(y, y′), then
the integral I =

∫
f dx is invariant under the particular transformation

ỹ = y(x) + εη and x̄ = x+ εξ (43)

with
η = 0 and ξ = 1. (44)

By invariant we mean that Ī(ε) = Ī(ε = 0) = I.
To see this, we start from

I =

∫ xb

xa

f(y(x), y′(x)) dx

and form the integral

Ī(ε) =

∫ x̄b

x̄a

f(ỹ(x̄), ỹ′(x̄)) dx̄.

Just as we did above, we now write (using η = 0 and ξ = 1)

ỹ(x̄) = y(x̄− ε)

with
x̄a = xa + ε and x̄b = xb + ε.

Then we have

Ī(ε) =

∫ xb+ε

xa+ε

f

[
y(x̄− ε),

dy(x̄ − ε)

dx̄

]
dx̄

=

∫ xb+ε

xa+ε

f

[
y(x̄− ε),

dy(x̄ − ε)

d(x̄ − ε)

]
dx̄

where we used the fact that

dy(x̄− ε)

dx̄
=
dy(x̄− ε)

d(x̄− ε)

d(x̄ − ε)

dx̄
=
dy(x̄− ε)

d(x̄− ε)
.

Changing variables to x = x̄− ε yields

Ī(ε) =

∫ xb

xa

f(y(x), y′(x)) dx = Ī(0) = I

which shows that I is indeed invariant under the given transformation (43) and
(44).

To see that this again leads to equation (14), first suppose that we have
the general case where the functions yi(x) that we are varying are solutions to
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the Euler-Lagrange equations, i.e., that f(yi, y
′

i, x) satisfies the Euler-Lagrange
equations. Then the integral in equation (42) vanishes and we are left with

Ī(ε) − Ī(0) = ε

[ n∑

i=1

ηi
∂f

∂y′i
+ ξ

(
f −

n∑

i=1

y′i
∂f

∂y′i

)]xb

xa

. (45)

But we just showed that under the transformation (43) the left hand side of this
equation vanishes (in the present case there is no sum on the right since we are
dealing with only one dependent variable y(x)), and hence using equation (44)
we are left with

0 =

(
f − y′

∂f

∂y′

)∣∣∣∣
xb

xa

=

(
f − y′

∂f

∂y′

)∣∣∣∣
xb

−
(
f − y′

∂f

∂y′

)∣∣∣∣
xa

and therefore, since xa and xb were arbitrary we have

f − y′
∂f

∂y′
= const (46)

which is just equation (14) as we wanted to show.
It is worth pointing out that if f is the Lagrangian L = T −V of a system of

particles, then the independent variable is the time t so (as we also mentioned
after equation (14)) the conserved quantity in this case is the Hamiltonian H =
ẋ(∂L/∂ẋ) − L := pẋ− L. And if (as is usually the case) H represents the total
energy H = T + V of the system, then we have shown that invariance of the

Lagrangian under time translation leads to the conservation of energy.
In summary, we have shown that the integral I =

∫
f dx is invariant under

the particular transformation (43) and (44), and as a consequence we have the
conserved quantity defined by equation (46). We now state the generalization
of this result, called Noether’s theorem.

Theorem 3. Suppose the integral

I =

∫ xb

xa

f(y1, . . . , yn, y
′

1, . . . , y
′

n, x) dx

is invariant under the transformation

ỹi(x) = yi(x) + εηi(x, y1, . . . , yn, y
′

1, . . . , y
′

n) (47)

x̄ = x+ εξ(x, y1, . . . , yn, y
′

1, . . . , y
′

n) (48)

by which we mean

Ī(ε) =

∫ xb

xa

f(ỹ1(x̄), . . . , ỹn(x̄), ỹ′1(x̄), . . . , ỹ
′

n(x̄), x̄) dx̄ = I.

Then there exists a first integral of the related Euler-Lagrange equations which

is given by
n∑

i=1

ηi
∂f

∂y′i
+ ξ

(
f −

n∑

i=1

y′i
∂f

∂y′i

)
= const. (49)
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Proof. By hypothesis, the functions yi(x) are solutions to the Euler-Lagrange
equations, and hence equation (45) applies:

Ī(ε) − I = ε

[ n∑

i=1

ηi
∂f

∂y′i
+ ξ

(
f −

n∑

i=1

y′i
∂f

∂y′i

)]xb

xa

.

But by the assumed invariance of I, the left hand side of this equation vanishes
so that

[ n∑

i=1

ηi
∂f

∂y′i
+ ξ

(
f −

n∑

i=1

y′i
∂f

∂y′i

)]

xa

=

[ n∑

i=1

ηi
∂f

∂y′i
+ ξ

(
f −

n∑

i=1

y′i
∂f

∂y′i

)]

xb

.

Since xa and xb are arbitrary it follows that

n∑

i=1

ηi
∂f

∂y′i
+ ξ

(
f −

n∑

i=1

y′i
∂f

∂y′i

)
= const. �

The term “first integral” is justified because, as we explained in our deriva-
tion of equation (14), the expression (49) is a first-order equation, in contrast
to the second-order Euler-Lagrange equation.

Also observe that in the case where ξ = 0 (which corresponds to leaving the
independent variable alone), we obtain exactly the same result as we did at the
beginning of this section. In other words, leaving the independent variable alone
means the invariance of I is the same as the invariance of f .

Example 15. Consider a two-particle system where the potential energy de-
pends only on the vector joining the particles. Then the Lagrangian of this
system is given by

L =
1

2
m1(ẋ

2
1 + ẏ2

1 + ż2
1) +

1

2
m2(ẋ

2
2 + ẏ2

2 + ż2
2) − V (r1 − r2).

This Lagrangian is clearly invariant under the transformation (where i = 1, 2)

t̄ = t+ ετ x̃i = xi + εξi ỹi = yi + εηi z̃i = zi + εζi

with τ = ηi = ζi = 0 and ξi = 1. In other words, L is invariant under spatial
translation in the x-direction.

Applying equation (49) we easily obtain (with the slight change in notation)

2∑

i=1

ξi
∂L

∂ẋi
=

∂L

∂ẋ1
+
∂L

∂ẋ2
= m1ẋ1 +m2ẋ2 = const

which is just the statement of conservation of linear momentum in the x-
direction. This result obviously applies to any one of the three directions, so
we see that translational invariance of the Lagrangian leads to conservation of
linear momentum.
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Example 16. Now consider a particle moving in a central potential V (r) where
r = (x2 + y2 + z2)1/2. Then the Lagrangian is given by

L =
1

2
m(ẋ2 + ẏ2 + ż2) − V (r)

and it is easy to see that this is rotationally invariant. Indeed, under a rotation
we have

xi → x̃i =

3∑

j=1

aijxj

where the orthogonal rotation matrix A = (aij) satisfies ATA = I so that

r̃ =
∑3

i=1(x̃i)
2 =

∑3
i=1(xi)

2 = r. This shows that the potential energy is
invariant under rotations. And since (aij) is a constant matrix, it is also clear
that

˙̃xi =

3∑

j=1

aij ẋj

so that
∑3

i=1(
˙̃xi)

2 =
∑3

i=1(ẋi)
2 and kinetic energy is also invariant under rota-

tions.
For definiteness, consider a rotation by the angle ε about the z-axis. This

corresponds to the transformation

t̄ = t x̃ = x cos ε+ y sin ε ỹ = −x sin ε+ y cos ε z̃ = z.

Since we are considering infinitesimal transformations ε≪ 1, these become

t̄ = t x̃ = x+ εy ỹ = y − εx z̃ = z

so using the same notation as in the previous example, we have τ = ζ = 0, ξ = y
and η = −x. Plugging these values into equation (49) we obtain

ξ
∂L

∂ẋ
+ η

∂L

∂ẏ
= myẋ−mxẏ = const

which is just the statement that the z-component of angular momentum Lz =
(r × p)z = xpy − ypx is a constant.

You can repeat this calculation for rotations about the x- and y-axes to
see that Lx and Ly are also conserved. In other words, the invariance of the
Lagrangian under rotations leads to the conservation of angular momentum.

Summarizing the physics of what we have shown, the invariance (symmetry)
of the Lagrangian under translations in time, spatial translations and rotations
has lead to the conservation of energy, linear momentum and angular momentum
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respectively. These are specific examples of how Hamilton’s principle

δS = δ

∫
Ldt = 0

allows us to find conservation laws as a consequence of the invariance of the
action under various symmetry transformations.

10 Noether’s Theorem in Field Theory

We now turn our attention to formulating Noether’s theorem in 4-dimensional
spacetime. There are many ways to approach this result, and almost every text
follows a different method with different hypotheses, but they all seem to arrive
at essentially the same result. Because of this, we will prove the theorem from
more than one point of view so that when you run across it you should be able
to understand whichever approach that author is following.

Let us first consider the variation of a scalar field φ = φ(x) where points
in spacetime are labeled by the point x. In other words, x stands for all four
variables xµ = {x0, x1, x2, x3} = {t, x, y, z}. We will show that if a system is
described by the Lagrangian

L =

∫
d3xL (φ(x), ∂µφ(x))

with the equation of motion

∂L

∂ϕ
− ∂µ

(
∂L

∂(∂µϕ)

)
= 0

then any continuous symmetry transformation that leaves the action

S =

∫
Ldt =

∫
L d4x

invariant implies the existence of a conserved current

∂µj
µ(x) = 0

with a “charge” defined by

Q(t) =

∫
d3x j0(x)

which is a constant of the motion

dQ

dt
= 0.

To begin with, we consider two types of variation. In the first case we vary
the field at a particular spacetime point:

φ(x) → φ′(x) = φ(x) + δφ(x) or δφ(x) = φ′(x) − φ(x). (50)
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The second case (which we call the “total variation”) varies both the field and
the point at which it is evauated:

φ(x) → φ′(x′) = φ(x) + ∆φ(x) or ∆φ(x) = φ′(x′) − φ(x). (51)

Of course we also have

x→ x′ = x+ δx or x′µ = xµ + δxµ. (52)

It is easy (but important) to note that

δ∂µφ := ∂µφ
′(x) − ∂µφ(x) = ∂µ(φ′(x) − φ(x)) = ∂µδφ.

In particular, equation (50) yields (note the arguments are all x and not x′)

∂µδφ(x) = δ∂µφ(x) = ∂µφ
′(x) − ∂µφ(x). (53)

It is trickier to find the analogous result for equation (51). First note that
(52) implies

∂x′µ

∂xα
= δµ

α + ∂αδx
µ (54)

and hence the inverse matrix is given by

∂xα

∂x′µ
= δα

µ − ∂µδx
α (55)

because to first order

∂x′µ

∂xα

∂xα

∂x′ν
= (δµ

α + ∂αδx
µ)(δα

ν − ∂νδx
α) = δµ

ν .

Using the notation φ,µ(x) := ∂µφ(x) we have

∆φ,µ := ∆∂µφ(x) :=
∂φ′(x′)

∂x′µ
− ∂φ(x)

∂xµ

=
∂xα

∂x′µ
∂φ′(x + δx)

∂xα
− ∂φ(x)

∂xµ
(by the chain rule and (52))

=
∂xα

∂x′µ
∂α[φ(x + δx) + δφ(x + δx)] − ∂µφ(x) (by (50))

=
∂xα

∂x′µ
∂α[φ(x) + ∂νφ(x)δxν + δφ(x)] − ∂µφ(x) (expand to 1st order)

= (δα
µ − ∂µδx

α)[∂αφ(x) + ∂αφ,ν(x)δxν + φ,ν(x)∂αδx
ν + ∂αδφ(x)] − ∂µφ(x)

(by (55) and acting thru with ∂α)

= ∂µφ+ ∂µφ,νδx
ν + φ,ν∂µδx

ν + ∂µδφ− ∂αφ∂µδx
α − ∂µφ. (to 1st order)

Cancelling terms we are left with our desired result

∆φ,µ(x) = ∂µδφ(x) + ∂µφ,νδx
ν . (56)
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It will also be useful to write (51) as follows:

∆φ(x) = φ′(x′) − φ(x) = φ′(x+ δx) − φ(x) = φ′(x) + ∂µφ
′(x)δxµ − φ(x)

= δφ(x) + ∂µφ
′(x)δxµ = δφ(x) + ∂µ[φ(x) + δφ(x)]δxµ

or (to first order)
∆φ(x) = δφ(x) + ∂µφ(x)δxµ. (57)

The total variation applied to the Lagrangian density L = L (φ(x), ∂µφ(x))
yields L ′ = L (φ′(x′), ∂′µφ

′(x′)) where ∂′µφ
′(x′) = ∂φ′(x′)/∂x′µ. Our basic

hypothesis is that L remains invariant under this total variation, i.e. L ′ = L ,
and that the action also remains invariant, i.e.

∫
d4x′ L ′ =

∫
d4xL . But the

standard change of variables formula says d4x′ = |∂x′/∂x|d4x, so if L ′ = L ,
then we must also have the Jacobian |∂x′/∂x| = 1. In other words,

∣∣∣∣
∂x′

∂x

∣∣∣∣ = det

(
∂x′µ

∂xα

)
= det(δµ

α + ∂αδx
µ) = 1.

(Of course, if we are dealing with a coordinate transformation that is simply
a Lorentz transformation (which is the most common situation), then x′µ =
Λµ

νx
ν where ΛT gΛ = g and we automatically have |∂x′/∂x| = |detΛ| = 1.

This also follows from the fact that the invariant volume element is
√
|det g|d4x

where g = diag(1,−1,−1,−1).)
In any case, I claim this implies that

tr(∂αδx
µ) = ∂µδx

µ = 0. (58)

To see this, simply note from the definition of determinant, we have for any
matrix A = (aij)

det(I +A) = εi1···in(δ1i1 + a1i1 )(δ2i2 + a2i2) · · · (δnin
+ anin

)

= εi1···in(δ1i1δ2i2 · · · δnin
+ a1i1δ2i2 · · · δnin

+ δ1i1a2i2 · · · δnin

+ · · · + δ1i1 · · · δn−1in−1
anin

+ terms of higher order in aij

+ a1i1a2i2 · · ·anin
)

= εi1···inδ1i1δ2i2 · · · δnin
+ εi1···ina1i1δ2i2 · · · δnin

+ εi1···inδ1i1a2i2 · · · δnin
+ · · · + εi1···inδn−1in−1

anin

+ terms of higher order in aij + εi1···ina1i1a2i2 · · · anin

= det I + εi12···na1i1 + ε1i2···na2i2 + · · · + ε1···n−1inanin

+ higher order terms + detA

= det I + a11 + a22 + · · · + ann + higher order terms + detA

= 1 + trA+ · · · + detA.
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Thus if |aij | ≪ 1, to first order we have det(I + A) ≈ 1 + trA, and hence
det(I +A) = 1 implies trA = 0 as claimed.

Before proving Noether’s theorem, let us briefly recall the usual derivation
of the Euler-Lagrange equation (33). In this case, we consider only variations of
the fields at a particular point x as in equation (50), not the spacetime points
x themselves. Then

δL = L (φ′(x), ∂µφ
′(x)) − L (φ(x), ∂µφ(x))

=
∂L

∂φ
δφ+

∂L

∂φ,µ
δφ,µ

=
∂L

∂φ
δφ+

∂L

∂φ,µ
∂µδφ

=

[
∂L

∂φ
− ∂µ

(
∂L

∂φ,µ

)]
δφ+ ∂µ

(
∂L

∂φ,µ
δφ

)
. (59)

By hypothesis we have δS = δ
∫
d4xL =

∫
d4x δL = 0 where δφ = 0 on the

bounding spacetime surface. Then the last term in (59) doesn’t contribute to
the integral and we are left with

∫
d4x

[
∂L

∂φ
− ∂µ

(
∂L

∂φ,µ

)]
δφ = 0.

Since δφ was arbitrary, we conclude that

∂L

∂φ
− ∂µ

(
∂L

∂φ,µ

)
= 0. (60)

Furthermore, it is easy to see that if we have multiple fields labeled by φr, then
each field satisfies this equation also, i.e.,

∂L

∂φr
− ∂µ

(
∂L

∂φr
,µ

)
= 0. (61)

Example 17. Consider the electromagnetic four-potential Aµ = (ϕ,A) along
with the electromagnetic field tensor Fµν = ∂µAν − ∂νAµ = −Fνµ and the
four-current Jµ = (ρ,J). Define the Lagrangian density

L = −1

4
F 2 − J ·A

= −1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) − JµA

µ.

Here the fields Aµ correspond to the φr .
Applying equation (61) we first easily find

∂L

∂Aµ
= −Jµ.
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Now for the term

∂ν

(
∂L

∂(∂νAµ)

)
= ∂ν

(
∂L

∂(∂νAµ)

)
.

We just have to be a little bit careful and realize that the indices in L are
dummy indices. Noting we can write ∂αAβ = gαρgβλ∂

ρAλ and so forth, we
have

−1

4
F 2 = −1

4
gαρgβλ(∂ρAλ − ∂λAρ)(∂αAβ − ∂βAα)

and therefore

−1

4

∂F 2

∂(∂νAµ)
= −1

4
gαρgβλ

[
(δρ

νδ
λ
µ − δλ

ν δ
ρ
µ)(∂αAβ − ∂βAα)

+ (∂ρAλ − ∂λAρ)(δα
ν δ

β
µ − δβ

ν δ
α
µ)

]

= −1

4

[
(δρ

νδ
λ
µ − δλ

ν δ
ρ
µ)(∂ρAλ − ∂λAρ)

+ (∂αAβ − ∂βAα)(δα
ν δ

β
µ − δβ

ν δ
α
µ )

]

= −(∂νAµ − ∂µAν) = −Fνµ.

Using these results, the Euler-Lagrange equations become simply ∂νFνµ = Jµ

or, equivalently
∂µF

µν = Jν (62)

which you may recognize as two of Maxwell’s equations.
To see this, first recall that we are using the metric g = diag(1,−1,−1,−1)

so that ∂/∂t = ∂/∂x0 = ∂0 = ∂0 and ∇
i := ∂/∂xi = ∂i = −∂i. Using

E = −∇ϕ− ∂A/∂t we have

Ei = ∂iA0 − ∂0Ai = F i0

and also B = ∇ × A so that

B1 = ∇
2A3 − ∇

3A2 = −∂2A3 + ∂3A2 = −F 23

plus cyclic permutations 1 → 2 → 3 → 1. Then the electromagnetic field tensor
is given by

Fµν =




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


 .

(Be sure to note that this is the form of Fµν for the metric diag(1,−1,−1,−1).
If you use the metric diag(−1, 1, 1, 1) then all entries of Fµν change sign. In
addition, you frequently see the matrix Fµ

ν which also has different signs.)
For the ν = 0 component of equation (62) we have J0 = ∂µF

µ0 = ∂iF
i0 =

∂iE
i which is Coulomb’s law

∇ · E = ρ.
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Now consider the ν = 1 component of equation (62). This is J1 = ∂µF
µ1 =

∂0F
01 + ∂2F

21 + ∂3F
31 = −∂0E

1 + ∂2B
3 − ∂3B

2 = −∂tE
1 + (∇ × B)1 and

therefore we have

∇ × B − ∂E

∂t
= J.

The last two Maxwell equations follow directly by taking the divergence of
B = ∇ × A and the curl of E = −∇φ− ∂A/∂t, i.e.,

∇ · B = 0

and

∇ × E +
∂B

∂t
= 0.

I leave it as an exercise for you to show that these last two equations can be
written as (note that the superscripts are cyclic permutations)

∂µF νσ + ∂νF σµ + ∂σFµν = 0

or simply
∂[µF νσ] = 0.

Now for Noether’s theorem. In this case we consider the total variation and
assume that it is a symmetry of L , i.e. L ′ = L . Recall that by definition we
have ∆φ,µ = ∂φ′(x′)/∂x′µ − ∂φ(x)/∂xµ and therefore

∂′µφ
′(x′) =

∂φ′(x′)

∂x′µ
= ∂µφ(x) + ∆φ,µ.

Then we have

0 = δL = L (φ′(x′), ∂′µφ
′(x′)) − L (φ(x), ∂µφ(x))

=
∂L

∂φ
∆φ +

∂L

∂φ,µ
∆φ,µ

=
∂L

∂φ
(δφ + ∂αφ δx

α) +
∂L

∂φ,µ
(∂µδφ+ ∂µφ,αδx

α) (by (56) and (57))

=
∂L

∂φ
δφ+

∂L

∂φ
∂αφ δx

α +
∂L

∂φ,µ
∂µδφ+

∂L

∂φ,µ
∂αφ,µδx

α

(since ∂µφ,α = ∂αφ,µ)

= ∂µ

(
∂L

∂φ,µ

)
δφ+

∂L

∂φ,µ
∂µδφ+

(
∂L

∂φ

∂φ

∂xα
+
∂L

∂φ,µ

∂φ,µ

∂xα

)
δxα

(by (60) and ∂α = ∂/∂xα)

= ∂µ

(
∂L

∂φ,µ
δφ

)
+
∂L

∂xα
δxα (by the product and chain rules)
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= ∂µ

[
∂L

∂φ,µ
(∆φ − φ,αδx

α)

]
+ gµ

α∂µL δxα (by (57))

= ∂µ

[
∂L

∂φ,µ
∆φ− ∂L

∂φ,µ
φ,α δx

α + gµ
αL δxα

]
(by (58)) .

(Note that gµ
α = δµ

α.)
Let us define the canonical energy-momentum tensor T µ

α by

T µ
α =

∂L

∂φ,µ
φ,α − gµ

αL (63)

and the current jµ by

jµ =
∂L

∂φ,µ
∆φ− T µ

αδx
α. (64)

Then we have shown that
∂µj

µ = 0. (65)

In other words, the current jµ obeys a continuity equation, and is also referred
to as a “conserved current.”

We now define the charge Q by

Q :=

∫

all space

d3x j0.

This charge is conserved (i.e., constant in time) because ∂0j
0 + ∂ij

i = ∂0j
0 +

∇ ·~j = 0 so that

dQ

dt
=

d

dt

∫

all space

d3x j0 =

∫
d3x∂0j

0 = −
∫
d3x∇ ·~j

= −
∫

surface at ∞

da n̂ ·~j

= 0

where the last integral vanishes because the fields are assumed to vanish at
infinity. This then is the statement of Noether’s theorem. In other words, if the
Lagrangian is invariant under a symmetry transformation, then there exists a
conserved charge Q.

Note that from (57) we may also write jµ in the form

jµ =
∂L

∂φ,µ
(δφ+ φ,αδx

α) − ∂L

∂φ,µ
φ,αδx

α + L δxµ

=
∂L

∂φ,µ
δφ+ L δxµ.
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In addition, if the fields have several components φr, then these would also be
summed over. For example, (using the summation convention on the index r
also)

T µ
α =

∂L

∂φr,µ
φr,α − gµ

αL . (66)

and

jµ =
∂L

∂φr,µ
∆φr − T µ

αδx
α. (67)

Example 18. Let us first take a look at the simple case of translational invari-
ance, and derive the energy-momentum tensor directly. Under the translation

xµ → x′µ = xµ + εµ

(where ε is a constant) we can say in general that the Lagrangian will change
by an amount

δL = L
′ − L = (∂µL )εµ = ∂µ(gµ

ν L )εν .

On the other hand however, if L is translationally invariant, then it can have
no explicit dependence on xµ so that L = L (ϕr, ∂ϕr/∂x

µ) and we can write

δL =
∂L

∂ϕr
δϕr +

∂L

∂ϕr,µ
δϕr,µ

where
δϕr = ϕr(x+ ε) − ϕr(x) = εν∂νϕr(x) = ενϕr,ν

and
δϕr,µ = δ∂µϕr = ∂µδϕr = ∂µ(∂νϕr)ε

ν = ∂µϕr,νε
ν .

(Remember that we sum over the index r, but its placement as a superscript or
subscript doesn’t make any difference.) Using equation (61) to replace the first
term in δL we then find

δL = ∂µ

(
∂L

∂ϕr,µ

)
ϕr,νε

ν +
∂L

∂ϕr,µ
∂µϕr,νε

ν

= ∂µ

(
∂L

∂ϕr,µ
ϕr,ν

)
εν

Equating the general form for the variation of L with the specific form that we
just derived for translational invariance, and using the fact that εν is arbitrary,
we obtain

∂µ

(
∂L

∂ϕr,µ
ϕr,ν − gµ

ν L

)
= 0.

Defining the canonical energy-momentum tensor

T µ
ν =

∂L

∂ϕr,µ
ϕr,ν − gµ

ν L
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we have the conservation equation

∂µT
µ

ν = 0

which can also be written as
∂µT

µν = 0.

Note also that in general T µν is not symmetric, i.e., T µν 6= T νµ. We will have
some additional comments on this below.

To interpret T µν , recall from particle mechanics that the momentum is de-
fined by p = ∂L/∂q̇. For fields, we similarly define the canonical momentum

by

πr(x) :=
∂L

∂ϕ̇r
.

The particle mechanics Hamiltonian is defined by H =
∑
piq̇i −L, and now we

have the Hamiltonian density

H = πϕ̇ − L

so that

H =

∫
d3xH .

Let us define the 4-vector

P ν =

∫
d3xT 0ν =

∫
d3x [πr(x)∂

νϕr(x) − g0ν
L ].

This is a conserved quantity because from ∂µT
µν = ∂0T

0ν + ∂iT
iν = 0 we have

dP ν

dt
= ∂0P

ν =

∫
d3x∂0T

0ν = −
∫
d3x∂iT

iν

and changing to a surface integral at infinity this must vanish (since the fields
are assumed to vanish at infinity). Now observe that

T 00 = πϕ̇− L = H

is the Hamiltonian density, and the Hamiltonian is then the spatial integral of
this:

H =

∫
d3xH =

∫
d3xT 00 = P 0.

In other words, P 0 is just the (conserved) total energy. Since the zeroth com-
ponent of a 4-vector is the energy, it follows that P ν is in fact the energy-
momentum 4-vector for the field. This is the justification for calling T µν the
energy-momentum tensor.
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Example 19. Recall from Example 13 that the Lagrangian for the Klein-
Gordon equation is

L =
1

2

[
(∂αϕ)(∂αϕ) −m2ϕ2

]
.

The scalar field ϕ(x) represents a spinless particle of mass m. By ‘scalar field’
we mean that it is invariant under a Poincaré transformation

x→ x′µ = Λµ
νx

ν + aµ.

In other words, ϕ(x) → ϕ′(x′) = ϕ(x) so that ∆ϕ(x) = 0.
In particular, let us first consider an infinitesimal translation x → x′µ =

xµ + εµ so δxµ = εµ. We have seen that (see Example 13)

∂L

∂ϕ,µ
= ∂µϕ

and hence

T µ
ν =

∂L

∂(∂µϕ)
∂νϕ− gµ

νL

= (∂µϕ)(∂νϕ) − 1

2
δµ
ν

[
(∂αϕ)(∂αϕ) −m2ϕ2

]

so the current becomes

jµ = −T µ
νδx

ν = (∂µϕ)(∂νϕ)εν − 1

2

[
(∂αϕ)(∂αϕ) −m2ϕ2

]
εµ.

Note that the continuity equation (65) becomes

∂µj
µ = −∂µT

µ
νε

ν = 0.

But the displacements εν are all independent, and hence we have

∂µT
µν = 0.

From the previous example, the canonical momentum density is given by

π(x) =
∂L

∂ϕ̇
=

∂L

∂(∂0ϕ)
= ∂0ϕ(x) = ϕ̇(x).

Now consider an infinitesimal Lorentz transformation

xµ → x′µ = Λµ
νx

ν = (gµ
ν + εµ

ν)xν = xµ + εµ
νx

ν .

For a Lorentz transformation we have x′µ = Λµ
νx

ν along with x′µx′µ = xνxν

and together these imply
Λµ

αΛµβ = gαβ . (68)
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This is equivalent to (ΛT )α

µ
gµνΛν

β = gαβ or simply

ΛT gΛ = g.

(This is sometimes taken as the definition of a Lorentz transformation, i.e.,
it leaves the metric invariant.) Substituting the infinitesimal transformation
Λµ

ν = gµ
ν +εµ

ν into (68) and expanding to first order yields gαβ = gαβ +εαβ +
εβα and hence we have the important result that

εαβ = −εβα. (69)

So now we have δxµ = εµ
νx

ν or, equivalently, δxα = εαβx
β .

The current is given by

jµ = −T µαδxα = −T µαεαβx
β

so using equation (69) we can antisymmetrize over α and β to write

jµ = −T µαxβεαβ =
1

2
(−T µαxβ + T µβxα)εαβ :=

1

2
εαβM

µαβ

where we have defined

M
µαβ = xαT µβ − xβT µα.

Again, εαβ is arbitrary so we are left with the continuity equation

∂µj
µ = ∂µM

µαβ = 0.

The conserved ‘charge’ is now

Mαβ :=

∫
d3x j0 =

∫
d3xM

0αβ =

∫
d3x (xαT 0β − xβT 0α)

where

M ij =

∫
d3x (xiT 0j − xjT 0i)

represents the angular momentum of the field as the integral of an angular
momentum density. (Remember that P i =

∫
d3xT 0i is the ith component of

the momentum of the field, so this is just like the classical expression Lk =
xipj − xjpi.)

Observe that the energy-momentum tensor for the Klein-Gordon field can
be written as

T µν = (∂µϕ)(∂νϕ) − gµν
L

which is symmetric. While it is certainly not the case that T µν is symmetric
in general, it is nonetheless possible to define a symmetric energy-momentum

64



tensor closely related to T µν. To see this, define

Θ
µν = T µν + ∂σf

σµν

where fσµν is any arbitrary function of the fields that is antisymmetric in its
first two indices : fσµν = −fµσν . Then clearly

∂µ∂σf
σµν = 0

so that we also have
∂µΘ

µν = ∂µT
µν = 0.

Furthermore, we see that
∫

R

d3xΘ
0ν =

∫

R

d3x (T 0ν + ∂σf
σ0ν) =

∫

R

d3xT 0ν +

∫

R

d3x∂if
i0ν

=

∫

R

d3xT 0ν +

∫

∂R

daif
i0ν =

∫

R

d3xT 0ν

= P ν

where we used the fact that f00ν = 0, and we used the 4-dimensional divergence
theorem to convert the volume integral to a surface integral where the fields are
assumed to vanish. If we choose fσµν in such a way as to make Θ

µν symmetric,
then we see that while the energy-momentum tensor is not unique, we can still
define a symmetric energy-momentum tensor that yields a unique 4-momentum,
and thus the energy and momentum of the fields remain unique.

There are a number of reasons for wanting the energy-momentum tensor to
be symmetric. One good reason is that this must be the case in order that the
angular momentum of the field be conserved. For the Klein-Gordon field we
have seen that the angular momentum density of the field is given by

M
µαβ = xαT µβ − xβT µα.

Then

∂µM
µαβ = δα

µT
µβ + xα∂µT

µβ − δβ
µT

µα − xβ∂µT
µα

= Tαβ − T βα

since ∂µT
µα = 0. But then ∂µM µαβ = 0 implies that we must have Tαβ = T βα.

Another good reason comes from Einstein’s equation of general relativity.
This is

Rµν − 1

2
gµνR = −8πG

c2
Tµν .

Since both the Ricci tensor Rµν and the metric gµν are symmetric, we must also
have a symmetric energy-momentum tensor.

So much for scalar fields and spinless particles. What about particles with
spin? These are described by fields that have several components φr and def-
inite transformation properties under Poincaré transformations. To motivate
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our next example, recall that a Poincaré transformation consists of a Lorentz
transformation plus a displacement, and hence we may write a general variation
in x as

xµ → x′µ = xµ + δxµ = xµ + εµ
νx

ν + aµ (70)

which represents an infinitesimal rotation εµν (i.e., a Lorentz boost) plus a
translation aµ. To motivate a reasonable form for the transformation of the
fields, recall (maybe, but the details here are unimportant anyway) from the
theory of the Dirac equation that the operator corresponding to an infinitesimal
Lorentz transformation Λµ

ν = gµ
ν + εµ

ν is given by

S(Λ) = I − i

2
εµνΣµν

where Σµν = (i/4)(γµγν − γνγµ) is a 4 × 4 complex matrix. Hence in the
infinitesimal case the Dirac spinors transform as (where x′ = Λx and we use the
summation convention on latin indices even though both are down)

ψr(x) → ψ′

r(x
′) = S(Λ)rsψs(x) =

(
1 − i

2
εµνΣµν

)

rs

ψs(x)

= ψr(x) −
i

2
εµν(Σµν)rsψs(x).

Example 20. Using the above discussion as a model, we assume that the
transformation (70) induces a corresponding change in the fields of the form
given by

φr(x) → φ′r(x
′) = φr(x) + ∆φr(x) = φr(x) +

1

2
εµνS

µν
rs φs(x) (71)

where εµν = −ενµ.
We first consider a pure translation. This means εµν = 0 so equations (70)

and (71) yield δxµ = aµ and ∆φr(x) = 0. Then from (64) we have jµ = −T µ
αa

α

so that ∂µj
µ = 0 implies (since aα is arbitrary)

∂µT
µα = 0

where

T µα =
∂L

∂φ,µ

∂φ

∂xα
− gµα

L .

We now define

Pα =

∫
d3xT 0α =

∫
d3x

(
∂L

∂φ,0

∂φ

∂xα
− g0α

L

)

where
∂L

∂φ,0
=
∂L

∂φ̇
= π(x)
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is the canonical momentum. Then

P 0 =

∫
d3x (πφ̇− L ) =

∫
d3xH = H

which implies that T 00 is the energy density, and

P i =

∫
d3xT 0i =

∫
d3xπ ∂iφ

which implies that T 0i is the momentum density. Note also that each Pα is
conserved because applying the divergence theorem yields

dPα

dt
=

∫
d3x∂0T

0α = −
∫
d3x∂iT

iα = −
∫
dSi T

iα

and this also vanishes at infinity.
Now consider rotations. This means aµ = 0 so that δxµ = εµ

νx
ν and

∆φr(x) = 1
2εµνS

µν
rs φs(x). From (64) the current is given by

jµ =
∂L

∂φ,µ

1

2
εαβS

αβ
rs φs − T µ

αε
α

βx
β .

Using (69) we can write

T µαεαβx
β =

1

2
(T µαεαβx

β + T µβεβαx
α) =

1

2
εαβ(xβT µα − xαT µβ)

and therefore

jµ =
1

2
εαβ

[
∂L

∂φr,µ
Sαβ

rs φs + (xαT µβ − xβT µα)

]
:=

1

2
εαβM

µαβ .

Define

Mαβ =

∫
d3xM

0αβ =

∫
d3x [πrS

αβ
rs φs + (xαT 0β − xβT 0α)]

and note

M ij =

∫
d3x [πrS

ij
rsφs + (xiT 0j − xjT 0i)]

so that we interpret xiT 0j − xjT 0i as the orbital angular momentum density
and πrS

ij
rsφs as the intrinsic spin angular momentum density of the field. Note

this shows that the scalar field ϕ satisfying the Klein-Gordon equation indeed
represents a spinless particle since its angular momentum tensor only contains
an orbital part.

Now, the derivation of equation (65) (with equation (64)) specifically re-
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quired that both the action and the Lagrangian density be invariant. However,
using a slightly different approach we can arrive at the same result by requiring
that the action alone be invariant.

So, with a somewhat different notation, let us consider the action

S =

∫
d4xL (φ, ∂µφ)

and see what happens when we make the transformations

x→ x′

φ(x) → φ′(x′) := F(φ(x)).

We now have a new action S′ which we write out using the chain rule and
Jacobi’s formula for the change of variables:

S′ =

∫
d4x′ L (φ′(x′), ∂′µφ

′(x′))

=

∫
d4x′ L (F(φ(x)), ∂′µF(φ(x)))

=

∫
d4x

∣∣∣∣
∂x′

∂x

∣∣∣∣L (F(φ(x)), (∂xν/∂x′µ)∂νF(φ(x))). (72)

Let us expand our transformations to first order in terms of a set of in-
finitesimal parameters ωa as (using the summation convention on the index a
over whatever range is necessary)

x′µ = xµ + ωa
δxµ

δωa
:= xµ + ωaX

µ
a (73a)

φ′(x′) = F(φ(x)) = φ(x) + ωa
δF
δωa

(x) := φ(x) + ωaFa(x). (73b)

It is important to realize that so far we assume that the ωa’s can depend on x.
As we also saw earlier, the Jacobian and its inverse may be written as

∂x′µ

∂xν
= δµ

ν + ∂ν(ωaX
µ
a ) (74a)

∂xν

∂x′µ
= δν

µ − ∂µ(ωaX
ν
a ) (74b)

so that

∣∣∣∣
∂x′

∂x

∣∣∣∣ = 1 + ∂µ(ωaX
µ
a ). (74c)
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Expanding to first order we have

∂′µφ
′(x′) =

∂xν

∂x′µ
∂νF(φ(x)) =

∂xν

∂x′µ
∂ν(φ + ωaFa)

= [δν
µ − ∂µ(ωaX

ν
a )][∂νφ+ ∂ν(ωaFa)]

= ∂µφ+ ∂µ(ωaFa) − ∂µ(ωaX
ν
a )∂νφ. (75)

Using equations (73b), (74c) and (75) in (72) we expand S′ again to first
order in ωa:

S′ =

∫
d4x

∣∣∣∣
∂x′

∂x

∣∣∣∣ L (φ + ωaFa, ∂µφ+ ∂µ(ωaFa) − ∂µ(ωaX
ν
a )∂νφ)

=

∫
d4x [1 + ∂µ(ωaX

µ
a )]

{
L (φ, ∂µφ) +

∂L

∂φ
ωaFa

+
∂L

∂(∂µφ)
[∂µ(ωaFa) − ∂µ(ωaX

ν
a )∂νφ]

}

= S +

∫
d4x

{
∂L

∂φ
ωaFa +

∂L

∂(∂µφ)
[∂µ(ωaFa) − ∂µ(ωaX

ν
a )∂νφ]

+ ∂µ(ωaX
µ
a )L

}
.

Therefore

δS = S′ − S =

∫
d4x

{[
∂L

∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
ωaFa + ∂µ

(
∂L

∂(∂µφ)
ωaFa

)

− ∂L

∂(∂µφ)
∂µ(ωaX

ν
a )∂νφ+ ∂µ(ωaX

ν
a )gµ

ν L

}
.

But the term in square brackets vanishes by the Euler-Lagrange equation (which
we assume that the fields satisfy) so we have

δS =

∫
d4x

{
∂µ

(
∂L

∂(∂µφ)
ωaFa

)
−

[
∂L

∂(∂µφ)
∂νφ− gµ

ν L

]
∂µ(ωaX

ν
a )

}

=

∫
d4x

{
∂µ

(
∂L

∂(∂µφ)
Fa

)
ωa +

∂L

∂(∂µφ)
Fa(∂µωa)

−
[

∂L

∂(∂µφ)
∂νφ− gµ

ν L

]
ωa(∂µX

ν
a ) −

[
∂L

∂(∂µφ)
∂νφ− gµ

ν L

]
Xν

a (∂µωa)

}

=

∫
d4x

{
∂µ

(
∂L

∂(∂µφ)
Fa

)
−

[
∂L

∂(∂µφ)
∂νφ− gµ

ν L

]
∂µX

ν
a

}
ωa

+

∫
d4x

{
∂L

∂(∂µφ)
Fa −

[
∂L

∂(∂µφ)
∂νφ− gµ

ν L

]
Xν

a

}
∂µωa. (76)
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Next comes the clever argument. Suppose that our transformation is global,
meaning that the parameters ωa are constants. Then ∂µωa = 0 and the second
integral in equation (76) vanishes, so if we are to have δS = 0, then the first
integral must also vanish. But ωa is an arbitrary constant, so it comes out of the
integral, and we conclude that the first integral must vanish. Now suppose that
we have the more general case where the transformation is arbitrary and local,
i.e., it could be that ∂µωa 6= 0. Note that a global transformation is a special
case of a local transformation. If the action is still to be invariant for arbitrary

∂µωa, then for those where ωa is a constant we must have the first integral
(without including the constant ωa) vanish. But this integral is independent of
ωa, and since δS = 0 for both constant and non-constant ωa’s, it must vanish
identically no matter which type of ωa we consider. Then we are left with only
the second integral, so for arbitrary ∂µωa the rest of its integrand must vanish.

Let us write

δS =

∫
d4x jµ

a ∂µωa

where

jµ
a =

∂L

∂(∂µφ)
Fa −

[
∂L

∂(∂µφ)
∂νφ− gµ

ν L

]
Xν

a (77)

is called the current associated with the transformation. Integrating by parts
and assuming that the fields vanish at infinity we obtain

δS = −
∫
d4x (∂µj

µ
a )ωa.

If we now assume that the fields obey the classical equations of motion (the
Euler-Lagrange equation) and the action vanishes for arbitrary (continuous)
position-dependent variations ωa, then we have the conservation law

∂µj
µ
a = 0

with the corresponding conserved charges

Qa =

∫
j0a d

3x.

Equation (77) is essentially identical to equation (64). (The connection is δxµ =
ωaX

µ
a and ∆φ = ωaFa. What we wrote as jµ in equations (64) and (65) would

then apply to each individual and independent component a.)
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