6.14 Vibrating membrane in a circular domain

$$
\begin{equation*}
\text { PDE: } \quad \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \triangle u, \quad \text { in disk } \quad r<a \quad \text { in } \quad \mathbb{R}^{2}, \tag{1}
\end{equation*}
$$

Boundary condition: $\quad u(t, a, \theta)=0, \quad r=a, \quad \theta \in[-\pi, \pi]$,

$$
\begin{align*}
& \text { Initial condition: } \quad u(0, r, \theta)=\alpha(r, \theta) \text {, } \\
& \frac{\partial u}{\partial t}(0, r, \theta)=\beta(r, \theta) . \tag{3}
\end{align*}
$$

Using separation of variables

$$
\begin{equation*}
u(t, r, \theta)=\phi(r, \theta) G(t) \tag{4}
\end{equation*}
$$

we find

$$
\begin{equation*}
\triangle \phi+\lambda \phi=0, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} G}{d t^{2}}+\lambda c^{2} G=0 \tag{6}
\end{equation*}
$$

We need

$$
\begin{equation*}
\phi(a, \theta)=0 . \tag{7}
\end{equation*}
$$

This time the domain is not rectangular. We will not have $\sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)$. We try separation of variables again

$$
\begin{equation*}
\phi(r, \theta)=f(r) g(\theta), \quad 0<r<a, \quad-\pi<\theta<\pi . \tag{8}
\end{equation*}
$$

Recall in $2-D$:

$$
\triangle \phi=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r} \phi\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \phi .
$$

Thus (5) becomes

$$
\begin{equation*}
-\frac{1}{g} \frac{d^{2} g}{d \theta^{2}}=\frac{r}{f} \frac{d}{d r}\left(r \frac{d f}{d r}\right)+\lambda r^{2}=: \mu \tag{9}
\end{equation*}
$$

(Comment on $u_{x x}+u_{y y}+\lambda u=0: \quad u=f(x) g(y): \quad \frac{f_{x x}}{f}+\frac{g_{y y}}{g}+\lambda=0$

$$
\left.\Rightarrow \frac{f_{x x}}{f}+\lambda=-\frac{g_{y y}}{g}=: \mu .\right)
$$

We see that g needs to be periodic in θ :

$$
\begin{align*}
g(\pi) & =g(-\pi), \\
\frac{d}{d \theta} g(\pi) & =\frac{d}{d \theta} g(-\pi) . \tag{10}
\end{align*}
$$

The "irregular" Sturm-Liouville eigenvalue problem

$$
\begin{equation*}
\frac{d^{2} g}{d \theta^{2}}+\mu g=0, \quad \text { with }(10) \tag{11}
\end{equation*}
$$

yields

$$
\begin{gather*}
\mu=\mu_{m}:=m^{2}, \quad m=0,1,2, \cdots . \tag{12}\\
g=\sin (m \theta) \quad \text { or } \quad \cos (m \theta) . \tag{13}
\end{gather*}
$$

Thus for $m=0$ there is one eigenfunction $g=1$, but for $m>0$, there are two linearly independent eigenfunctions. These eigenfunctions generate a complete and orthogonal basis for $L^{2}[-\pi, \pi]$. This is the full Fourier series: any function $\Gamma(\theta)$ in $L^{2}[-\pi, \pi]$ has the expansion

$$
\begin{equation*}
\Gamma(\theta)=\sum_{m=0}^{\infty}\left[a_{m} \cos (m \theta)+b_{m} \sin (m \theta)\right] \tag{14}
\end{equation*}
$$

(Define $b_{0}=0$ for notational convenience.) All right. Now for each μ_{m}, we consider equation (9)

$$
\begin{equation*}
\frac{r}{f} \frac{d}{d r}\left(r \frac{d f}{d r}\right)+\lambda r^{2}=m^{2} \tag{15}
\end{equation*}
$$

with the natural condition $|f(0)|<\infty$ and $f(a)=0$ derived from (7); i.e.,

$$
\left\{\begin{align*}
r\left(r f^{\prime}\right)^{\prime}+\left(\lambda r^{2}-m^{2}\right) f & =0 \tag{16}\\
|f(0)|<\infty, \quad f(a) & =0
\end{align*}\right.
$$

The solution to (16) are given in section 6.13.3 (Bessel's functions), and they are

$$
\left\{\begin{align*}
f(r) & =f_{m n}(r):=J_{m}\left(\sqrt{\lambda_{m n}} r\right) \tag{17}\\
\lambda & =\lambda_{m n}:=\left(\frac{z_{m n}}{a}\right)^{2}, \quad n=1,2, \cdots
\end{align*}\right.
$$

We have found ϕ for (5)

$$
\phi=\phi_{m n}:=J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left[a_{m} \cos (m \theta)+b_{m} \sin (m \theta)\right] .
$$

For the G function in (6) we find

$$
G(t)=\cos \left(c \sqrt{\lambda_{m n}} t\right) \quad \text { or } \quad \sin \left(c \sqrt{\lambda_{m n}} t\right) .
$$

Combining all the factors, we find a general solution formula

$$
\begin{align*}
u(t, r, \theta)= & \sum_{m=0}^{\infty} \sum_{n=1}^{\infty}\left[A_{m n} J_{m}\left(\sqrt{\lambda_{m n}} r\right) \cos (m \theta) \cos \left(c \sqrt{\lambda_{m n}} t\right)\right. \\
& +B_{m n} J_{m}\left(\sqrt{\lambda_{m n}} r\right) \sin (m \theta) \cos \left(c \sqrt{\lambda_{m n}} t\right) \\
& +C_{m n} J_{m}\left(\sqrt{\lambda_{m n}} r\right) \cos (m \theta) \sin \left(c \sqrt{\lambda_{m n}} t\right) \tag{18}\\
& \left.+D_{m n} J_{m}\left(\sqrt{\lambda_{m n}} r\right) \sin (m \theta) \sin \left(c \sqrt{\lambda_{m n}} t\right)\right] .
\end{align*}
$$

Imposing the initial condition (3) on (18) will determine the coefficients. For example, let $\beta=0$, we find $C_{m n}=D_{m n}=0$. Then

$$
\alpha(r, \theta)=\sum_{m=0}^{\infty}\left(\sum_{n=1}^{\infty} A_{m n} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\right) \cos (m \theta)+\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} B_{m n} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\right) \sin (m \theta)
$$

where

$$
\begin{aligned}
& A_{m n}=\frac{\int_{0}^{a} \int_{0}^{2 \pi} \alpha(r, \theta) J_{m}\left(\sqrt{\lambda_{m n}} r\right) \cos (m \theta) r d r d \theta}{\int_{0}^{a} \int_{0}^{2 \pi} J_{m}^{2}\left(\sqrt{\lambda_{m n}} r\right) \cos ^{2}(m \theta) r d r d \theta} \\
& B_{m n}=\frac{\int_{0}^{a} \int_{0}^{2 \pi} \alpha(r, \theta) J_{m}\left(\sqrt{\lambda_{m n}} r\right) \sin (m \theta) r d r d \theta}{\int_{0}^{a} \int_{0}^{2 \pi} J_{m}^{2}\left(\sqrt{\lambda_{m n}} r\right) \sin ^{2}(m \theta) r d r d \theta}
\end{aligned}
$$

We stopped here in class and I mentioned the concept of Green's function. I feel it is best for you to read the material when I put the Green's function in another section, see Section 6.15.

Notes. Two dimensional eigenvalue problems.

I give a summary here for all the two dimensional eigenvalue problems that we have encountered. They have appeared in

1. Poisson equation in a rectangle Ω (Section 6.9) (and Homework set 14)

$$
\left\{\begin{aligned}
\triangle \phi+\lambda \phi & =0, \\
\phi & \text { in } \Omega \\
\phi & \text { on } \partial \Omega .
\end{aligned}\right.
$$

2. Or in a disk (Section 6.13, Bessel's functions).
3. Heat flow in a rectangle, Section 6.10.4, to be up-loaded (also in Homework set 14).
4. Wave equation in a rectangle (Section 6.11), disk (Section 6.13).

Appendix: One-dimensional eigenvalue problem

We provide a complete solution to the eigenvalue problem

$$
\left\{\begin{aligned}
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi & =0, \quad 0<x<L \\
\phi(0) & =\phi(L)=0
\end{aligned}\right.
$$

Solution. The objective of the eigenvalue problem is to find both the parameter λ and a nonzero solution ϕ. We use the strategy of shooting. First let λ be zero $\lambda=0$, and see whether we can find a nonzero solution ϕ. In this case, the equation becomes $\phi^{\prime \prime}=0$. Thus $\phi=a_{1}+a_{2} x$. Then the boundary conditions imply that $a_{1}=a_{2}=0$. Thus we do not have any nonzero solution for $\lambda=0$. Let us now try to find a negative solution of $\lambda: \lambda=-c^{2}, \quad c>0$. Then the equation becomes

$$
\phi^{\prime \prime}-c^{2} \phi=0 .
$$

We use the guess work

$$
\phi=e^{\alpha x}
$$

to find that

$$
\alpha^{2}-c^{2}=0 .
$$

So $\alpha= \pm c$ and we have the solution

$$
\phi=a_{1} e^{c x}+a_{2} e^{-c x} .
$$

The boundary conditions imply similarly that $a_{1}=a_{2}=0$. So there is no solution for $\lambda=-c^{2}$. Let us now try $\lambda=c^{2}, c>0$, and solution of the form $\phi=e^{\alpha x}$; we find $\alpha= \pm i c$ and the solutions are

$$
\phi=a_{1} \cos (c x)+a_{2} \sin (c x) .
$$

The boundary condition $\phi(0)=0$ implies $a_{1}=0$. The boundary condition $\phi(L)=0$ implies

$$
\sin (c L)=0
$$

So we choose c, such that $c L=n \pi, \quad n=1,2, \cdots$. Thus $\lambda=\left(\frac{n \pi}{L}\right)^{2}$, and the corresponding solutions are

$$
\phi=a_{2} \sin \left(\frac{n \pi x}{L}\right) .
$$

