6.14 Vibrating membrane in a circular domain

82'” 2 . . . 2
PDE: W:CAU’ indisk r<a in IR7

Boundary condition: u(t,a,0) =0, r=a, 0¢€[—m 7],

Initial condition: u(0,7r,0) =

Using separation of variables

u(t,r,0) = o(r,0)G(t),

we find
Ap+ Ap =0,
and 2
20y
W + )\C G = O.
We need
¢(a,0) = 0.

nTr

This time the domain is not rectangular. We will not have sin(“7*) sin(

try separation of variables again
o(r,0) = f(r)g(d), 0<r<a, —-7mT<O<m.

Recall in 2 — D: R o2
1 1
ro=2202pn1+ 2% g
¢ r@r(rﬁr¢)+r2892¢

Thus (5) becomes
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(Comment on gz, +uyy +Au=0: u= f(x)g(y):
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We see that g needs to be periodic in 6:

g(ﬂ) :g(_ﬂ)a
d%g(w) = deg(_ﬂ')'
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The “irregular” Sturm-Liouville eigenvalue problem

d%g .
202 +pg =0, with (10) (11)
yields
M:Mm::’mQ, m=0,1,2,---. (12)
g =sin(mf) or cos(mb). (13)

Thus for m = 0 there is one eigenfunction g = 1, but for m > 0, there are two
linearly independent eigenfunctions. These eigenfunctions generate a complete and
orthogonal basis for L?[—n,7]. This is the full Fourier series: any function I'(6)

in L?[—m, 7] has the expansion

i [@p, cos(mB) + by, sin(m@)]. (14)

m=0

(Define by = 0 for notational convenience.) All right. Now for each p,,, we consider

equation (9)
rd  df

f d’r(
with the natural condition |f(0)| < co and f(a) = 0 derived from (7); i.e.,

)+ Ar? =m? (15)

{ r(rf’) + (Ar? —m?2)f =0, (16)

[f(0)| < o0, f(a)=0.

The solution to (16) are given in section 6.13.3 (Bessel’s functions), and they are

(17)

f(T) = fmn(r) = Jm(mr)p
A :)‘mn::(%gn)Q, n=1,2,---

We have found ¢ for (5)
& = Omn = I (V Amn 7) [am cos(mB) + by, sin(mb)].
For the G function in (6) we find

G(t) = cos(cVAmnt) or sin(cy Amn t).



Combining all the factors, we find a general solution formula
Wt 1,0) = Y550 T2 [ A (v K ) cos(mB) cos ey Komn )
+BnJm (V Amn 1) sin(m@) cos(ev/ A t)
+Crndm (v Amn 1) cos(mb) sin(cy/ A t)
+Dyn o (VA ) sin(mf) sin(ev/ A t)].

(18)

Imposing the initial condition (3) on (18) will determine the coefficients. For exam-
ple, let 8 =0, we find C}y, = Dy, = 0. Then

a(r,0) = > O Apndm(VAmn 1)) cos(mb) + > (D Bundm(V Amn 1)) sin(mb),
n=1

m=0 n=1 m=1

where
A kL 2T (7, 0) Ty (/A 1) cos(m8) v dr df
T 2T T2 (v A 1) cos?(m8) T drr df

B — f(;l 0271' Oé(’l”, H)Jm(\/)‘mn 7”) Sin(mé?)rdrdﬁ
" f(;l 027T ‘]TQTL( \% )\mn T) Sil’l2 (m@) rdrdf '

We stopped here in class and I mentioned the concept of Green’s function. I feel

)

it is best for you to read the material when I put the Green’s function in another

section, see Section 6.15.

Notes. Two dimensional eigenvalue problems.

I give a summary here for all the two dimensional eigenvalue problems that we
have encountered. They have appeared in

1. Poisson equation in a rectangle Q (Section 6.9) (and Homework set 14)

NAp+Ap =0, inQ
¢ =0 on Of.
2. Or in a disk (Section 6.13, Bessel’s functions).
3. Heat flow in a rectangle, Section 6.10.4, to be up-loaded (also in Homework set
14).
4. Wave equation in a rectangle (Section 6.11), disk (Section 6.13).



Appendix: One-dimensional eigenvalue problem

We provide a complete solution to the eigenvalue problem

327?+)\¢ =0, 0<x<lL
¢(0) =a(L) =0.

Solution. The objective of the eigenvalue problem is to find both the parameter
A and a nonzero solution ¢. We use the strategy of shooting. First let A\ be zero
A =0, and see whether we can find a nonzero solution ¢. In this case, the equation
becomes ¢” = 0. Thus ¢ = a; + asx. Then the boundary conditions imply that

a1 = a2 = 0. Thus we do not have any nonzero solution for A\ = 0. Let us now try

to find a negative solution of A : A = —c?, ¢ > 0. Then the equation becomes

¢//_02¢:0'

We use the guess work
to find that

So oo = +¢ and we have the solution
¢ = a1 + age” .

The boundary conditions imply similarly that a; = aa = 0. So there is no solution
for A = —c?. Let us now try A = ¢2, ¢ > 0, and solution of the form ¢ = e**; we find

« = F1c and the solutions are
¢ = aj cos(cz) + agsin(cz).

The boundary condition ¢(0) = 0 implies a; = 0. The boundary condition ¢(L) =0

implies
sin(cL) = 0.
So we choose ¢, such that ¢cL = nw, n = 1,2,---. Thus A = ("—L”)Q, and the
corresponding solutions are
. nmx
» = as sm(T).



