
6.14 Vibrating membrane in a circular domain

PDE:
∂2u

∂t2
= c24u, in disk r < a in IR2, (1)

Boundary condition: u(t, a, θ) = 0, r = a, θ ∈ [−π, π], (2)

Initial condition: u(0, r, θ) = α(r, θ),
∂u
∂t (0, r, θ) = β(r, θ).

(3)

Using separation of variables

u(t, r, θ) = φ(r, θ)G(t), (4)

we find

4φ+ λφ = 0, (5)

and
d2G

dt2
+ λc2G = 0. (6)

We need

φ(a, θ) = 0. (7)

This time the domain is not rectangular. We will not have sin(nπxL ) sin(mπyH ). We

try separation of variables again

φ(r, θ) = f(r)g(θ), 0 < r < a, −π < θ < π. (8)

Recall in 2−D:

4φ =
1
r

∂

∂r
(r
∂

∂r
φ) +

1
r2

∂2

∂θ2
φ.

Thus (5) becomes

−1
g

d2g

dθ2
=
r

f

d

dr
(r
df

dr
) + λr2 =: µ. (9)

(Comment on uxx + uyy + λu = 0 : u = f(x)g(y) : fxx
f + gyy

g + λ = 0

⇒ fxx
f

+ λ = −gyy
g

=: µ.)

We see that g needs to be periodic in θ:

g(π) = g(−π),
d
dθg(π) = d

dθg(−π).
(10)



The “irregular” Sturm-Liouville eigenvalue problem

d2g

dθ2
+ µg = 0, with (10) (11)

yields

µ = µm := m2, m = 0, 1, 2, · · · . (12)

g = sin(mθ) or cos(mθ). (13)

Thus for m = 0 there is one eigenfunction g = 1, but for m > 0, there are two

linearly independent eigenfunctions. These eigenfunctions generate a complete and

orthogonal basis for L2[−π, π]. This is the full Fourier series: any function Γ(θ)

in L2[−π, π] has the expansion

Γ(θ) =
∞∑
m=0

[am cos(mθ) + bm sin(mθ)]. (14)

(Define b0 = 0 for notational convenience.) All right. Now for each µm, we consider

equation (9)
r

f

d

dr
(r
df

dr
) + λr2 = m2 (15)

with the natural condition |f(0)| <∞ and f(a) = 0 derived from (7); i.e., r(rf ′)′ + (λr2 −m2)f = 0,

|f(0)| <∞, f(a) = 0.
(16)

The solution to (16) are given in section 6.13.3 (Bessel’s functions), and they are f(r) = fmn(r) := Jm(
√
λmn r),

λ = λmn := (zmna )2, n = 1, 2, · · · .
(17)

We have found φ for (5)

φ = φmn := Jm(
√
λmn r)[am cos(mθ) + bm sin(mθ)].

For the G function in (6) we find

G(t) = cos(c
√
λmn t) or sin(c

√
λmn t).
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Combining all the factors, we find a general solution formula

u(t, r, θ) =
∑∞
m=0

∑∞
n=1[AmnJm(

√
λmn r) cos(mθ) cos(c

√
λmn t)

+BmnJm(
√
λmn r) sin(mθ) cos(c

√
λmn t)

+CmnJm(
√
λmn r) cos(mθ) sin(c

√
λmn t)

+DmnJm(
√
λmn r) sin(mθ) sin(c

√
λmn t)].

(18)

Imposing the initial condition (3) on (18) will determine the coefficients. For exam-

ple, let β = 0, we find Cmn = Dmn = 0. Then

α(r, θ) =
∞∑
m=0

(
∞∑
n=1

AmnJm(
√
λmn r)) cos(mθ) +

∞∑
m=1

(
∞∑
n=1

BmnJm(
√
λmn r)) sin(mθ),

where

Amn =
∫ a

0

∫ 2π
0 α(r, θ)Jm(

√
λmn r) cos(mθ) r dr dθ∫ a

0

∫ 2π
0 J2

m(
√
λmn r) cos2(mθ) r dr dθ

,

Bmn =
∫ a
0

∫ 2π
0 α(r, θ)Jm(

√
λmn r) sin(mθ) r dr dθ∫ a

0

∫ 2π
0 J2

m(
√
λmn r) sin2(mθ) r dr dθ

.

We stopped here in class and I mentioned the concept of Green’s function. I feel

it is best for you to read the material when I put the Green’s function in another

section, see Section 6.15.

Notes. Two dimensional eigenvalue problems.

I give a summary here for all the two dimensional eigenvalue problems that we

have encountered. They have appeared in

1. Poisson equation in a rectangle Ω (Section 6.9) (and Homework set 14)

 4φ+ λφ = 0, in Ω

φ = 0 on ∂Ω.

2. Or in a disk (Section 6.13, Bessel’s functions).

3. Heat flow in a rectangle, Section 6.10.4, to be up-loaded (also in Homework set

14).

4. Wave equation in a rectangle (Section 6.11), disk (Section 6.13).
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Appendix: One-dimensional eigenvalue problem

We provide a complete solution to the eigenvalue problem
d2φ
dx2 + λφ = 0, 0 < x < L

φ(0) = φ(L) = 0.

Solution. The objective of the eigenvalue problem is to find both the parameter

λ and a nonzero solution φ. We use the strategy of shooting. First let λ be zero

λ = 0, and see whether we can find a nonzero solution φ. In this case, the equation

becomes φ′′ = 0. Thus φ = a1 + a2x. Then the boundary conditions imply that

a1 = a2 = 0. Thus we do not have any nonzero solution for λ = 0. Let us now try

to find a negative solution of λ : λ = −c2, c > 0. Then the equation becomes

φ′′ − c2φ = 0.

We use the guess work

φ = eαx

to find that

α2 − c2 = 0.

So α = ±c and we have the solution

φ = a1e
cx + a2e

−cx.

The boundary conditions imply similarly that a1 = a2 = 0. So there is no solution

for λ = −c2. Let us now try λ = c2, c > 0, and solution of the form φ = eαx; we find

α = ±ic and the solutions are

φ = a1 cos(cx) + a2 sin(cx).

The boundary condition φ(0) = 0 implies a1 = 0. The boundary condition φ(L) = 0

implies

sin(cL) = 0.

So we choose c, such that cL = nπ, n = 1, 2, · · · . Thus λ = (nπL )2, and the

corresponding solutions are

φ = a2 sin(
nπx

L
).
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