IMPORTANT INEQUALITIES

1. Arithmetic-Geometric-Harmonic Means.

Arithmetic Mean of n numbers. $a_{1}, a_{2}, \ldots, a_{n}$ are positive real numbers; their arithmetic mean is

$$
\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}
$$

Geometric Mean of n numbers. $a_{1}, a_{2}, \ldots, a_{n}$ are positive real numbers; their geometric mean is

$$
\sqrt[n]{a_{1} a_{2} \ldots a_{n}}
$$

Harmonic Mean of n numbers. $a_{1}, a_{2}, \ldots, a_{n}$ are positive real numbers; their harmonic mean is

$$
\begin{aligned}
& \frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}} \\
& \text { 2. AM-GM-HM }
\end{aligned}
$$

AM-GM-HM. a_{1}, \ldots, a_{n} are positive real gumbers. Then

$$
\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \ldots a_{n}} \geq \frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}}
$$

3. Generalized Means Inequality

Again, let a_{1}, \ldots, a_{n} be positive real numbers, and let p be real and non-zero. Let

$$
M_{p}\left(a_{1}, \ldots, a_{n}\right)=\left(\frac{a_{1}^{p}+a_{2}^{p}+\ldots+a_{n}^{p}}{n}\right)^{\frac{1}{p}}
$$

Note that M_{1} is the AM and M_{-1} is the HM; also, $\lim _{p \rightarrow 0} M_{p}=G M$.
Then $M_{p}\left(a_{1}, \ldots, a_{n}\right) \leq M_{q}\left(a_{1}, \ldots, a_{n}\right)$ for all $p<q$, with equality if and only if $a_{1}=a_{2}=\ldots=a_{n}$.

4. Cauchy-Buniakowsky-Schwarz

As before, a_{1}, \ldots, a_{n} are real positive numbers. Then

$$
\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}\right) \geq\left(a_{1} b_{1}+a_{2} b_{2}+\ldots a_{n} b_{n}\right)^{2}
$$

with equality if and only if $a_{1} / b_{1}=a_{2} / b_{2}=\ldots=a_{n} / b_{n}$.

5. Chebyshev

Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be two sequences which are monotonic in the same direction (either both increasing or both decreasing). Then
$\frac{a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}}{n} \geq\left(\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}\right)\left(\frac{b_{1}+b_{2}+\ldots+b_{n}}{n}\right)$.

