
IMPORTANT INEQUALITIES

1. Arithmetic-Geometric-Harmonic Means.

Arithmetic Mean of n numbers. a1, a2, . . . , an are positive real
numbers; their arithmetic mean is
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Geometric Mean of n numbers. a1, a2, . . . , an are positive real
numbers; their geometric mean is

n
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Harmonic Mean of n numbers. a1, a2, . . . , an are positive real num-
bers; their harmonic mean is
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2. AM-GM-HM

AM-GM-HM. a1, . . . , an are positive real gumbers. Then
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3. Generalized Means Inequality

Again, let a1, . . . , an be positive real numbers, and let p be real and
non-zero. Let
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Note that M1 is the AM and M−1 is the HM; also, lim
p→0

Mp = GM .

Then Mp(a1, . . . , an) ≤ Mq(a1, . . . , an) for all p < q, with equality if
and only if a1 = a2 = . . . = an.

4. Cauchy-Buniakowsky-Schwarz

As before, a1, . . . , an are real positive numbers. Then
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with equality if and only if a1/b1 = a2/b2 = . . . = an/bn.

5. Chebyshev

Let a1, a2, . . . , an and b1, b2, . . . , bn be two sequences which are mono-
tonic in the same direction (either both increasing or both decreasing).
Then
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